The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.
Metal hydrolysis and associated equilibrium constant values
The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:
p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+
and the corresponding formation constant as:
and associated equilibria can be written as:
MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH−
p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O
Aluminium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):
Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(-II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Terbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thallium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thorium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.
References
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 121.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797.
^Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252–259.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 414.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 375.
^ abcLothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC).
^ abcKitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency.
^Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters". Geochim. Cosmochim. Acta. 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 370.
^ abNordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
^ abNordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
^Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya. 12: 1486‒ 1503, 1968.
^ abcBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 103.
^ abcdefghijNordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.; Basset, R.L. (eds.). Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
^ abBrown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 95.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 383.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 111.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 301.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297.
^ abcdefHummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 319.
^Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 349.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 158.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 327.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 235.
^ abLemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. Vol. 13a. OECD Nuclear Energy Agency (NEA).
^Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620.
^Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 365.
^Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05.
^Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). "A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A. hdl:10447/326779.
^ abcdBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 86.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 89.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
^Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 181.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 226.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
^ abcBrown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 302.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741–755.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 312.
^Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl−, OH−, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 256.
^Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
^Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids. 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
^Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 380.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 183.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384.
^Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396.
^Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 246.
^Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
^ abcdefThoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
^ abGalbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563.
^Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 186.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
^Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 191.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 263.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 722.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 128.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
^ abcOlin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 386.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 387.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 342.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 278.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 252.
^Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry. 109: 104402. doi:10.1016/j.apgeochem.2019.104402.
^ abcFilella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 395.
^Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 335.
^ abBrown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 168.
^Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498.
^Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 357.
^Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta. 87: 1–20. doi:10.1016/j.gca.2012.03.029.
^ abGamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD.
^ abBrown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842.
^Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 208.
^ abBaes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 151.
^ abBrown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
^Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 181.