Homeomorphism (graph theory)

In graph theory, two graphs and are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of . If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the topological sense.[1]

Subdivision and smoothing

In general, a subdivision of a graph G (sometimes known as an expansion[2]) is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints {u,v } yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, {u,w } and {w,v }. For directed edges, this operation shall reserve their propagating direction.

For example, the edge e, with endpoints {u,v }:

can be subdivided into two edges, e1 and e2, connecting to a new vertex w of degree-2, or indegree-1 and outdegree-1 for the directed edge:

Determining whether for graphs G and H, H is homeomorphic to a subgraph of G, is an NP-complete problem.[3]

Reversion

The reverse operation, smoothing out or smoothing a vertex w with regards to the pair of edges (e1, e2) incident on w, removes both edges containing w and replaces (e1, e2) with a new edge that connects the other endpoints of the pair. Here, it is emphasized that only degree-2 (i.e., 2-valent) vertices can be smoothed. The limit of this operation is realized by the graph that has no more degree-2 vertices.

For example, the simple connected graph with two edges, e1 {u,w } and e2 {w,v }:

has a vertex (namely w) that can be smoothed away, resulting in:

Barycentric subdivisions

The barycentric subdivision subdivides each edge of the graph. This is a special subdivision, as it always results in a bipartite graph. This procedure can be repeated, so that the nth barycentric subdivision is the barycentric subdivision of the n−1st barycentric subdivision of the graph. The second such subdivision is always a simple graph.

Embedding on a surface

It is evident that subdividing a graph preserves planarity. Kuratowski's theorem states that

a finite graph is planar if and only if it contains no subgraph homeomorphic to K5 (complete graph on five vertices) or K3,3 (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to K5 or K3,3 is called a Kuratowski subgraph.

A generalization, following from the Robertson–Seymour theorem, asserts that for each integer g, there is a finite obstruction set of graphs such that a graph H is embeddable on a surface of genus g if and only if H contains no homeomorphic copy of any of the . For example, consists of the Kuratowski subgraphs.

Example

In the following example, graph G and graph H are homeomorphic.

Graph G
Graph H

If G′ is the graph created by subdivision of the outer edges of G and H′ is the graph created by subdivision of the inner edge of H, then G′ and H′ have a similar graph drawing:

Graph G′, H′

Therefore, there exists an isomorphism between G' and H', meaning G and H are homeomorphic.

mixed graph

The following mixed graphs are homeomorphic. The directed edges are shown to have an intermediate arrow head.

Graph G
Graph H

See also

References

  1. ^ Archdeacon, Dan (1996), "Topological graph theory: a survey", Surveys in graph theory (San Francisco, CA, 1995), Congressus Numerantium, vol. 115, pp. 5–54, CiteSeerX 10.1.1.28.1728, MR 1411236, The name arises because and are homeomorphic as graphs if and only if they are homeomorphic as topological spaces
  2. ^ Trudeau, Richard J. (1993). Introduction to Graph Theory. Dover. p. 76. ISBN 978-0-486-67870-2. Retrieved 8 August 2012. Definition 20. If some new vertices of degree 2 are added to some of the edges of a graph G, the resulting graph H is called an expansion of G.
  3. ^ The more commonly studied problem in the literature, under the name of the subgraph homeomorphism problem, is whether a subdivision of H is isomorphic to a subgraph of G. The case when H is an n-vertex cycle is equivalent to the Hamiltonian cycle problem, and is therefore NP-complete. However, this formulation is only equivalent to the question of whether H is homeomorphic to a subgraph of G when H has no degree-two vertices, because it does not allow smoothing in H. The stated problem can be shown to be NP-complete by a small modification of the Hamiltonian cycle reduction: add one vertex to each of H and G, adjacent to all the other vertices. Thus, the one-vertex augmentation of a graph G contains a subgraph homeomorphic to an (n + 1)-vertex wheel graph, if and only if G is Hamiltonian. For the hardness of the subgraph homeomorphism problem, see e.g. LaPaugh, Andrea S.; Rivest, Ronald L. (1980), "The subgraph homeomorphism problem", Journal of Computer and System Sciences, 20 (2): 133–149, doi:10.1016/0022-0000(80)90057-4, hdl:1721.1/148927, MR 0574589.

Further reading

  • Yellen, Jay; Gross, Jonathan L. (2005), Graph Theory and Its Applications, Discrete Mathematics and Its Applications (2nd ed.), Chapman & Hall/CRC, ISBN 978-1-58488-505-4

 

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9