If H11 is singular, we can still define the generalized Schur complement, using the Moore–Penrose inverse instead of .
The formula does not hold if H11 is singular. However, a generalization has been proven in 1974 by Carlson, Haynsworth and Markham,[4] to the effect that and .
Carlson, Haynsworth and Markham also gave sufficient and necessary conditions for equality to hold.
^Haynsworth, E. V., "Determination of the inertia of a partitioned Hermitian matrix", Linear Algebra and its Applications, volume 1 (1968), pages 73–81
^Carlson, D.; Haynsworth, E. V.; Markham, T. (1974). "A generalization of the Schur complement by means of the Moore–Penrose inverse". SIAM J. Appl. Math. 16 (1): 169–175. doi:10.1137/0126013.