Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics . Note that this formalism only applies to nondissipative fluids.
Irrotational barotropic flow
Take the simple example of a barotropic , inviscid vorticity-free fluid.
Then, the conjugate fields are the mass density field ρ and the velocity potential φ . The Poisson bracket is given by
{
ρ
(
y
→
)
,
φ
(
x
→
)
}
=
δ
d
(
x
→
−
y
→
)
{\displaystyle \{\rho ({\vec {y}}),\varphi ({\vec {x}})\}=\delta ^{d}({\vec {x}}-{\vec {y}})}
and the Hamiltonian by:
H
=
∫
d
d
x
H
=
∫
d
d
x
(
1
2
ρ
(
∇
φ
)
2
+
e
(
ρ
)
)
,
{\displaystyle H=\int \mathrm {d} ^{d}x{\mathcal {H}}=\int \mathrm {d} ^{d}x\left({\frac {1}{2}}\rho (\nabla \varphi )^{2}+e(\rho )\right),}
where e is the internal energy density, as a function of ρ .
For this barotropic flow, the internal energy is related to the pressure p by:
e
″
=
1
ρ
p
′
,
{\displaystyle e''={\frac {1}{\rho }}p',}
where an apostrophe ('), denotes differentiation with respect to ρ .
This Hamiltonian structure gives rise to the following two equations of motion :
∂
ρ
∂
t
=
+
∂
H
∂
φ
=
−
∇
⋅
(
ρ
u
→
)
,
∂
φ
∂
t
=
−
∂
H
∂
ρ
=
−
1
2
u
→
⋅
u
→
−
e
′
,
{\displaystyle {\begin{aligned}{\frac {\partial \rho }{\partial t}}&=+{\frac {\partial {\mathcal {H}}}{\partial \varphi }}=-\nabla \cdot (\rho {\vec {u}}),\\{\frac {\partial \varphi }{\partial t}}&=-{\frac {\partial {\mathcal {H}}}{\partial \rho }}=-{\frac {1}{2}}{\vec {u}}\cdot {\vec {u}}-e',\end{aligned}}}
where
u
→
=
d
e
f
∇
φ
{\displaystyle {\vec {u}}\ {\stackrel {\mathrm {def} }{=}}\ \nabla \varphi }
is the velocity and is vorticity-free . The second equation leads to the Euler equations :
∂
u
→
∂
t
+
(
u
→
⋅
∇
)
u
→
=
−
e
″
∇
ρ
=
−
1
ρ
∇
p
{\displaystyle {\frac {\partial {\vec {u}}}{\partial t}}+({\vec {u}}\cdot \nabla ){\vec {u}}=-e''\nabla \rho =-{\frac {1}{\rho }}\nabla {p}}
after exploiting the fact that the vorticity is zero:
∇
×
u
→
=
0
→
.
{\displaystyle \nabla \times {\vec {u}}={\vec {0}}.}
As fluid dynamics is described by non-canonical dynamics, which possess an infinite amount of Casimir invariants, an alternative formulation of Hamiltonian formulation of fluid dynamics can be introduced through the use of Nambu mechanics [ 1] [ 2]
See also
Notes
References
Badin, Gualtiero; Crisciani, Fulvio (2018). Variational Formulation of Fluid and Geophysical Fluid Dynamics - Mechanics, Symmetries and Conservation Laws - . Springer. p. 218. Bibcode :2018vffg.book.....B . doi :10.1007/978-3-319-59695-2 . ISBN 978-3-319-59694-5 . S2CID 125902566 .
Morrison, P.J. (2006). "Hamiltonian Fluid Mechanics" (PDF) . In Elsevier (ed.). Encyclopedia of Mathematical Physics . Vol. 2. Amsterdam. pp. 593– 600. {{cite encyclopedia }}
: CS1 maint: location missing publisher (link )
Morrison, P. J. (April 1998). "Hamiltonian Description of the Ideal Fluid" (PDF) . Reviews of Modern Physics . 70 (2). Austin, Texas: 467– 521. Bibcode :1998RvMP...70..467M . doi :10.1103/RevModPhys.70.467 . hdl :2152/61087 .
R. Salmon (1988). "Hamiltonian Fluid Mechanics" . Annual Review of Fluid Mechanics . 20 : 225– 256. Bibcode :1988AnRFM..20..225S . doi :10.1146/annurev.fl.20.010188.001301 .
Shepherd, Theodore G (1990). "Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics". Advances in Geophysics Volume 32 . Vol. 32. pp. 287– 338. Bibcode :1990AdGeo..32..287S . doi :10.1016/S0065-2687(08)60429-X . ISBN 9780120188321 .
Swaters, Gordon E. (2000). Introduction to Hamiltonian Fluid Dynamics and Stability Theory . Boca Raton, Florida: Chapman & Hall/CRC. p. 274. ISBN 1-58488-023-6 .
Nevir, P.; Blender, R. (1993). "A Nambu representation of incompressible hydrodynamics using helicity and enstrophy". J. Phys. A . 26 (22): 1189– 1193. Bibcode :1993JPhA...26L1189N . doi :10.1088/0305-4470/26/22/010 .
Blender, R.; Badin, G. (2015). "Hydrodynamic Nambu mechanics derived by geometric constraints". J. Phys. A . 48 (10): 105501. arXiv :1510.04832 . Bibcode :2015JPhA...48j5501B . doi :10.1088/1751-8113/48/10/105501 . S2CID 119661148 .