Ponce does research on nonlinear partial differential equations (PDEs) using PDE solutions to equations in mathematical physics, such as the Euler and Navier-Stokes equations of hydrodynamics.
with Sergiu Klainerman: Klainerman, S.; Ponce, Gustavo (1983), "Global, small amplitude solutions to nonlinear evolution equations", Communications on Pure and Applied Mathematics, 63: 133–141, doi:10.1002/cpa.3160360106
with Tosio Kato: Kato, Tosio; Ponce, Gustavo (1988), "Commutators estimates and the Euler and Navier-Stokes equations", Communications on Pure and Applied Mathematics, 41 (7): 891–907, doi:10.1002/cpa.3160410704
with Carlos Kenig and Luis Vega: "Smoothing effects and local theory theory for generalized nonlinear Schrödinger equations", Inventiones Mathematicae, 134: 489–545, 1998, doi:10.1007/s002220050272
with Carlos Kenig and Luis Vega: Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis (2004), "The Cauchy problem for quasi-linear Schrödinger equations", Inventiones Mathematicae, 158 (2): 343–388, doi:10.1007/s00222-004-0373-4
with A. Alexandrou Himonas, Gerard Misiolek, and Yong Zhou: Himonas, A. Alexandrou; Misiołek, Gerard; Ponce, Gustavo; Zhou, Yong (2007), "Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm equation", Communications in Mathematical Physics, 271 (2): 511–522, arXiv:math/0604192, doi:10.1007/s00220-006-0172-4
with Luis Escauriaza, Carlos Kenig, and Luis Vega: Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. (2006), "On uniqueness properties of solutions of Schrödinger equations", Communications in Partial Differential Equations, 31 (12): 1811–1823, arXiv:1110.4873, doi:10.1080/03605300500530446, S2CID121929231