Let be the largest (least negative) negative zero of the polynomial , where is the golden ratio. Let the point be given by
.
Let the matrix be given by
.
is the rotation around the axis by an angle of , counterclockwise. Let the linear transformations
be the transformations which send a point to the even permutations of with an even number of minus signs.
The transformations constitute the group of rotational symmetries of a regular tetrahedron.
The transformations , constitute the group of rotational symmetries of a regular icosahedron.
Then the 60 points are the vertices of a great snub icosahedron. The edge length equals , the circumradius equals , and the midradius equals .
For a great snub icosidodecahedron whose edge length is 1,
the circumradius is
The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedralpolyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices.
It is the dual of the uniform great inverted snub icosidodecahedron.
Proportions
Denote the golden ratio by . Let be the smallest positive zero of the polynomial . Then each pentagonal face has four equal angles of and one angle of . Each face has three long and two short edges. The ratio between the lengths of the long and the short edges is given by