The Grauert–Riemenschneider conjecture is a conjecture related to the Grauert–Riemenschneider vanishing theorem:
Grauert & Riemenschneider (1970a); Let M be an n-dimensional compact complex manifold. M is Moishezon if and only if there exists a smooth Hermitian line bundle L over M whose curvature form which is semi-positive everywhere and positive on an open dense set.[1]
Siu, Yum-Tong (1985). "Some recent results in complex manifold theory related to vanishing theorems for the semipositive case". Arbeitstagung Bonn 1984. Lecture Notes in Mathematics. Vol. 1111. pp. 169–192. doi:10.1007/BFB0084590. ISBN978-3-540-15195-1.