Unary operations create a new graph from a single initial graph.
Elementary operations
Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc.
The graph edit distance between a pair of graphs is the minimum number of elementary operations required to transform one graph into the other.
Advanced operations
Advanced operations create a new graph from an initial one by a complex change, such as:
Binary operations create a new graph from two initial graphs G1 = (V1, E1) and G2 = (V2, E2), such as:
graph union: G1 ∪ G2. There are two definitions. In the most common one, the disjoint union of graphs, the union is assumed to be disjoint. Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V1 ∪ V2, E1 ∪ E2).
graph join: . Graph with all the edges that connect the vertices of the first graph with the vertices of the second graph. It is a commutative operation (for unlabelled graphs);[2]