Four-point flexural testThe four-point flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam between the two loading points is put under maximum stress, as opposed to only the material right under the central bearing in the case of three-point bending. This difference is of prime importance when studying brittle materials, where the number and severity of flaws exposed to the maximum stress is directly related to the flexural strength and crack initiation. Compared to the three-point bending flexural test, there are no shear forces in the four-point bending flexural test in the area between the two loading pins.[1] The four-point bending test is therefore particularly suitable for brittle materials that cannot withstand shear stresses very well. It is one of the most widely used apparatus to characterize fatigue and flexural stiffness of asphalt mixtures.[2] Testing methodThe test method for conducting the test usually involves a specified test fixture on a universal testing machine. Details of the test preparation, conditioning, and conduct affect the test results. The sample is placed on two supporting pins a set distance apart and two loading pins placed at an equal distance around the center. These two loadings are lowered from above at a constant rate until sample failure. Calculation of the flexural stress
in these formulas the following parameters are used:
Calculation of the Elastic modulusIn the 4-point bending test, the specimen is placed on two supports and loaded in the middle by a test punch with two loading points. This results in a constant bending moment between the two supports. Consequently, a shear-free zone is created, where the specimen is subjected only to bending. This has the advantage that no additional shear force acts on the specimen, unlike in the 3-point bending test.[6] The bending modulus for a flat specimen is calculated as follows:
Advantages and disadvantagesAdvantages of three-point and four-point bending tests over uniaxial tensile tests include:
Disadvantages include:
Application with different materialsCeramicsCeramics are usually very brittle, and their flexural strength depends on both their inherent toughness and the size and severity of flaws. Exposing a large volume of material to the maximum stress will reduce the measured flexural strength because it increases the likelihood of having cracks reaching critical length at a given applied load. Values for the flexural strength measured with four-point bending will be significantly lower than with three-point bending.,[8] Compared with three-point bending test, this method is more suitable for strength evaluation of butt joint specimens. The advantage of four-point bending test is that a larger portion of the specimen between two inner loading pins is subjected to a constant bending moment, and therefore, positioning the joint region is more repeatable.[9] Composite materialsPlasticsStandards
See also
References
External links
|
Portal di Ensiklopedia Dunia