Finitely generated abelian group

In abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate . So, finitely generated abelian groups can be thought of as a generalization of cyclic groups.

Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified.

Examples

  • The integers, , are a finitely generated abelian group.
  • The integers modulo , , are a finite (hence finitely generated) abelian group.
  • Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group.
  • Every lattice forms a finitely generated free abelian group.

There are no other examples (up to isomorphism). In particular, the group of rational numbers is not finitely generated:[1] if are rational numbers, pick a natural number coprime to all the denominators; then cannot be generated by . The group of non-zero rational numbers is also not finitely generated. The groups of real numbers under addition and non-zero real numbers under multiplication are also not finitely generated.[1][2]

Classification

The fundamental theorem of finitely generated abelian groups can be stated two ways, generalizing the two forms of the fundamental theorem of finite abelian groups. The theorem, in both forms, in turn generalizes to the structure theorem for finitely generated modules over a principal ideal domain, which in turn admits further generalizations.

Primary decomposition

The primary decomposition formulation states that every finitely generated abelian group G is isomorphic to a direct sum of primary cyclic groups and infinite cyclic groups. A primary cyclic group is one whose order is a power of a prime. That is, every finitely generated abelian group is isomorphic to a group of the form

where n ≥ 0 is the rank, and the numbers q1, ..., qt are powers of (not necessarily distinct) prime numbers. In particular, G is finite if and only if n = 0. The values of n, q1, ..., qt are (up to rearranging the indices) uniquely determined by G, that is, there is one and only one way to represent G as such a decomposition.

The proof of this statement uses the basis theorem for finite abelian group: every finite abelian group is a direct sum of primary cyclic groups. Denote the torsion subgroup of G as tG. Then, G/tG is a torsion-free abelian group and thus it is free abelian. tG is a direct summand of G, which means there exists a subgroup F of G s.t. , where . Then, F is also free abelian. Since tG is finitely generated and each element of tG has finite order, tG is finite. By the basis theorem for finite abelian group, tG can be written as direct sum of primary cyclic groups.

Invariant factor decomposition

We can also write any finitely generated abelian group G as a direct sum of the form

where k1 divides k2, which divides k3 and so on up to ku. Again, the rank n and the invariant factors k1, ..., ku are uniquely determined by G (here with a unique order). The rank and the sequence of invariant factors determine the group up to isomorphism.

Equivalence

These statements are equivalent as a result of the Chinese remainder theorem, which implies that if and only if j and k are coprime.

History

The history and credit for the fundamental theorem is complicated by the fact that it was proven when group theory was not well-established, and thus early forms, while essentially the modern result and proof, are often stated for a specific case. Briefly, an early form of the finite case was proven by Gauss in 1801, the finite case was proven by Kronecker in 1870, and stated in group-theoretic terms by Frobenius and Stickelberger in 1878.[citation needed] The finitely presented case is solved by Smith normal form, and hence frequently credited to (Smith 1861),[3] though the finitely generated case is sometimes instead credited to Poincaré in 1900;[citation needed] details follow.

Group theorist László Fuchs states:[3]

As far as the fundamental theorem on finite abelian groups is concerned, it is not clear how far back in time one needs to go to trace its origin. ... it took a long time to formulate and prove the fundamental theorem in its present form ...

The fundamental theorem for finite abelian groups was proven by Leopold Kronecker in 1870,[citation needed] using a group-theoretic proof,[4] though without stating it in group-theoretic terms;[5] a modern presentation of Kronecker's proof is given in (Stillwell 2012), 5.2.2 Kronecker's Theorem, 176–177. This generalized an earlier result of Carl Friedrich Gauss from Disquisitiones Arithmeticae (1801), which classified quadratic forms; Kronecker cited this result of Gauss's. The theorem was stated and proved in the language of groups by Ferdinand Georg Frobenius and Ludwig Stickelberger in 1878.[6][7] Another group-theoretic formulation was given by Kronecker's student Eugen Netto in 1882.[8][9]

The fundamental theorem for finitely presented abelian groups was proven by Henry John Stephen Smith in (Smith 1861),[3] as integer matrices correspond to finite presentations of abelian groups (this generalizes to finitely presented modules over a principal ideal domain), and Smith normal form corresponds to classifying finitely presented abelian groups.

The fundamental theorem for finitely generated abelian groups was proven by Henri Poincaré in 1900, using a matrix proof (which generalizes to principal ideal domains).[citation needed] This was done in the context of computing the homology of a complex, specifically the Betti number and torsion coefficients of a dimension of the complex, where the Betti number corresponds to the rank of the free part, and the torsion coefficients correspond to the torsion part.[4]

Kronecker's proof was generalized to finitely generated abelian groups by Emmy Noether in 1926.[4]

Corollaries

Stated differently the fundamental theorem says that a finitely generated abelian group is the direct sum of a free abelian group of finite rank and a finite abelian group, each of those being unique up to isomorphism. The finite abelian group is just the torsion subgroup of G. The rank of G is defined as the rank of the torsion-free part of G; this is just the number n in the above formulas.

A corollary to the fundamental theorem is that every finitely generated torsion-free abelian group is free abelian. The finitely generated condition is essential here: is torsion-free but not free abelian.

Every subgroup and factor group of a finitely generated abelian group is again finitely generated abelian. The finitely generated abelian groups, together with the group homomorphisms, form an abelian category which is a Serre subcategory of the category of abelian groups.

Non-finitely generated abelian groups

Note that not every abelian group of finite rank is finitely generated; the rank 1 group is one counterexample, and the rank-0 group given by a direct sum of countably infinitely many copies of is another one.

See also

Notes

  1. ^ a b Silverman & Tate (1992), p. 102
  2. ^ de la Harpe (2000), p. 46
  3. ^ a b c Fuchs, László (2015) [Originally published 1958]. Abelian Groups. Springer. p. 85. ISBN 978-3-319-19422-6.
  4. ^ a b c Stillwell, John (2012). "5.2 The Structure Theorem for Finitely Generated". Classical Topology and Combinatorial Group Theory. p. 175.
  5. ^ Wussing, Hans (2007) [1969]. Die Genesis des abstrackten Gruppenbegriffes. Ein Beitrag zur Entstehungsgeschichte der abstrakten Gruppentheorie [The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory.]. p. 67.
  6. ^ G. Frobenius, L. Stickelberger, Uber Grubben von vertauschbaren Elementen, J. reine u. angew. Math., 86 (1878), 217-262.
  7. ^ Wussing (2007), pp. 234–235
  8. ^ Substitutionentheorie und ihre Anwendung auf die Algebra, Eugen Netto, 1882
  9. ^ Wussing (2007), pp. 234–235

References

Read other articles:

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

Dietmar Hamann Hamann pada tahun 2011Informasi pribadiNama lengkap Dietmar Johann Wolfgang Hamann[1]Tanggal lahir 27 Agustus 1973 (umur 50)[2]Tempat lahir Waldsassen, Jerman BaratTinggi 1,89 m (6 ft 2+1⁄2 in)[2]Posisi bermain Gelandang bertahanKarier junior1978–1989 Wacker München1989–1992 Bayern MünchenKarier senior*Tahun Tim Tampil (Gol)1992–1994 Bayern München (A) 24 (8)1993–1998 Bayern München 105 (6)1998–1999 Newcastle United 2…

Logo TNT TNT N.V. (Euronext: TNT, NYSE: TNT) merupakan perusahaan internasional dalam bidang kurir yang bermarkas di Hoofddorp (munisipalitas Haarlemmermeer), Belanda. Perusahaan ini didirikan tahun 1996. Perusahaan ini mempekerjakan 161.000 pekerja dan beroperasi lebih dari 200 negara. TNT N.V. masuk dalam bursa dagangan Euronext Aamsterdam dan New York Stock Exchange. TNT mengoperasikan Royal TNT Post BV, TNT Express, TNT Logistics, dan TNT Post yang beroperasi di semua negara-negara di E…

Данио-рерио Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые рыбыИнфр…

第三十二届夏季奥林匹克运动会柔道比賽比賽場館日本武道館日期2021年7月24日至31日項目數15参赛选手393(含未上场5人)位選手,來自128(含未上场4队)個國家和地區← 20162024 → 2020年夏季奥林匹克运动会柔道比赛个人男子女子60公斤级48公斤级66公斤级52公斤级73公斤级57公斤级81公斤级63公斤级90公斤级70公斤级100公斤级78公斤级100公斤以上级78公斤以上级团体混合…

James Charles Burnett is commemorated with street art in Burnett Lane, Brisbane, 2015 James Charles Burnett (1815—1854) a.k.a. John[1] was a surveyor and explorer in New South Wales (including Queensland), Australia. He was the head of the first Survey Office established at Brisbane in 1844.[2] Note, the separation of Queensland from New South Wales did not occur until 1859 and so the name Queensland was not used in Burnett's lifetime. Early life James Charles Burnett was born …

拉米兹·阿利雅Ramiz Alia第1任阿尔巴尼亚總統任期1991年4月30日—1992年4月9日继任萨利·贝里沙阿尔巴尼亚人民议会主席团主席任期1982年11月22日—1991年4月30日前任哈奇·列希继任转任总统阿尔巴尼亚劳动党第一书记任期1985年4月13日—1991年5月4日前任恩维尔·霍查继任无(政党解散) 个人资料出生(1925-10-18)1925年10月18日 阿尔巴尼亚斯库台逝世2011年10月17日(2011歲—10—17)(85歲)…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Swedish Air Force general and equestrian Åge LundströmNative nameJohan August LundströmBorn(1890-06-08)8 June 1890Stockholm, SwedenDied26 September 1975(1975-09-26) (aged 85)Landskrona, SwedenAllegianceSwedenService/branchArmy (1910–1926)Air Force (1926–1947)Years of service1910–1947RankMajor GeneralCommands held4th Air CorpsSwedish Air Force Flying School2nd Air CommandOther workAdjutant of the Prince Gustaf Adolf, Duke of VästerbottenChief of staff of Folke Bernadotte'…

Stasiun Marumori丸森駅Stasiun Marumori pada Juni 2007LokasiTateyama-Yamada, Marumori-machi, Igu-gun, Miyagi-ken 981-2103JepangKoordinat37°55′50.42″N 140°45′42.51″E / 37.9306722°N 140.7618083°E / 37.9306722; 140.7618083Koordinat: 37°55′50.42″N 140°45′42.51″E / 37.9306722°N 140.7618083°E / 37.9306722; 140.7618083OperatorAbukumaExpressJalur■ Jalur Abukuma ExpressLetak37.5 km dari FukushimaJumlah peron1 peron pulauJumlah ja…

Extinct genus of primates AnapithecusTemporal range: Late Miocene PreꞒ Ꞓ O S D C P T J K Pg N Miocene Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Family: †Pliopithecidae Subfamily: †Crouzeliinae Genus: †AnapithecusKretzoi, 1975 Species †Anapithecus hernyaki Anapithecus (pronounced Ana-PITH-i-kuhs; from Greek πίθηκος pithekos ape) is a late Miocene primate (10 million…

English noblewoman Her GraceThe Duchess of PortlandGBEIvy Gordon-Lennox by Philip de László, 1915BornIvy Gordon-Lennox(1887-06-16)16 June 1887London, EnglandDied3 March 1982(1982-03-03) (aged 94)Welbeck Woodhouse, Nottinghamshire, EnglandTitleDuchess of PortlandSpouseWilliam Cavendish-Bentinck, 7th Duke of PortlandChildrenLady Anne Cavendish-BentinckLady Victoria ParenteParent(s)Lord Algernon Gordon-LennoxDame Blanche Gordon-Lennox, DBE Ivy Cavendish-Bentinck, Duchess of Portland GBE (né…

Bridge in Rochester, New YorkVeterans Memorial BridgeCoordinates43°11′33″N 77°37′14″W / 43.19250°N 77.62056°W / 43.19250; -77.62056CarriesEight lanes of NY 104PedestriansCrossesGenesee RiverLocaleRochester, New YorkMaintained byNew York State Department of TransportationPreceded byDriving Park BridgeFollowed byKodak Park/Seneca Park pedestrian walkwayCharacteristicsMaterialSteel faced with white graniteTotal length981 feet (299 m)Width106 feet (32…

Private school in the United States This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (September 2017) (Learn how and when to remove this message) This article contains text that is written in a promotional tone. Please help improve it by removing promotional language and i…

Autonomous region of Tanzania This article is about the modern Tanzanian region. For the 19th and 20th century sultanate, see Sultanate of Zanzibar. For the Yemeni port city, see Zinjibar. For other uses, see Zanzibar (disambiguation). ZanzibarZanzibar (Swahili)زنجبار (Arabic) Flag Coat of arms Anthem: Mungu ibariki Afrika (Swahili)God has blessed us[1]Location of Zanzibar within TanzaniaThe major islands of Unguja and Pemba in the Indian OceanCapitalZanzibar Ci…

British politician Jack Ashley redirects here. For the Australian rules footballer, see Jack Ashley (Australian footballer). For the English footballer, see Jack Ashley (footballer, born 1912). The Right HonourableThe Lord Ashley of StokeCH PCAshley in 2010Member of the House of LordsLord TemporalIn office10 July 1992 – 20 April 2012 Life PeerageMember of Parliament for Stoke-on-Trent SouthIn office31 March 1966 – 16 March 1992Preceded byEllis SmithSucceeded byGeorge St…

American actress (born 1976) Piper PeraboPiper Perabo at the 2011 San Diego Comic-ConBornPiper Lisa Perabo (1976-10-31) October 31, 1976 (age 47)Dallas, Texas, U.S.Alma materOhio UniversityOccupationActressYears active1997–presentSpouse Stephen Kay ​(m. 2014)​ Piper Lisa Perabo (/ˈpɛrəboʊ/ ⓘ PERR-ə-boh; born October 31, 1976) is an American actress. Following her breakthrough in the comedy-drama film Coyote Ugly (2000),[1] she star…

У этого термина существуют и другие значения, см. Михайло-Архангельский собор. Кафедральный собор Михаила Архангелаказ. Михаил-Архангел ғибадатханасы 51°11′00″ с. ш. 51°22′43″ в. д.HGЯO Тип Православный храм Страна  Казахстан Город Уральск Конфессия Православие…

Il Sistema politico della Repubblica Italiana può ricondursi a una democrazia rappresentativa, nella forma di repubblica parlamentare. Lo Stato è organizzato in base a un significativo decentramento. L'Italia è una repubblica democratica dopo il referendum del 2 giugno 1946, quando la monarchia fu abolita e fu eletta un'Assemblea costituente incaricata di redigere la Costituzione, la quale venne successivamente promulgata dal Capo provvisorio dello Stato Enrico De Nicola il 27 dicembre 1947, …