European Multidisciplinary Seafloor and water-column Observatory (EMSO) is a large-scale European distributed Research Infrastructure[1] for ocean observation, enabling real-time interactive long term monitoring of ocean processes. EMSO allows study of the interaction between the geosphere, the biosphere, the hydrosphere, and the lithosphere; including natural hazards, climate change, and marine ecosystems. EMSO nodes have been deployed at key sites in European seas, starting from the Arctic, through the Atlantic and Mediterranean, to the Black Sea.
Overview
EMSO is a consortium of partners sharing a common strategic framework of scientific facilities (data, instruments, computing and storage capacity). EMSO is a European Research Infrastructure Consortium (ERIC), a specific legal form created for pan-European large-scale research infrastructures by the European Commission that facilitates the establishment and operation of Research Infrastructures with European interest..
EMSO is one of the environmental RIs [2] on the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI). The ESRFI Roadmap identifies RIs of pan-European importance that corresponds to the long term needs of European research communities.
The different EMSO nodes are designed to address topics of regional importance: the biodiversity of mid ocean hot vents in the Azores region, the rapidly changing environmental conditions affecting the geosphere and biosphere of the Arctic, the deep-water ventilation in the eastern Mediterranean, the active seismicity and the associated geo-hazards of the Anatolian region.[3]
EMSO infrastructure has the capacity to observe the deep and open ocean, below, at and above the seafloor, at the European scale, utilizing both stand-alone observing systems, and nodes connected to shore stations through high throughput fibre optic cable.[4]
The mission of EMSO is to unite these regional observatories into a common research infrastructure, to implement more generic sensor packages to collect synoptic data series on oceanographic features of more than regional interest, to bring these data together in a uniform format accessible to the general public, and to ensure maintenance of this research infrastructure over a longer time-span than easily maintained by national funding programs.[5]
Ocean observatories
The global oceans cover 70% of the surface of the globe, consist of 95% of the living space, and are the core momentum of our planet's physical, chemical, and biological cycles. As underlined in recent policy documents such as the Galway Statement [6] and Belmont Challenge[7], in order to understand the changes predicted in the coming decades, EMSO aims to have a continuous presence in the oceans; and in order to understand both the slow moving and rapid catastrophes, EMSO seeks to have continuous real-time data from which to learn and to derive adaptation and early warning systems. Ocean observatories provide power and communications to allow a sustained interactive presence in the ocean. This challenge can only be addressed as part of an international cooperation between USA,[8] Canada, Japan, Australia, Europe and other interested countries where EMSO takes a role for the European side.
Major science themes
The deployment of the EMSO distributed observatory nodes is allowing researchers to get useful data in order to understand the behaviour of the oceans and their impact on human society.
In particular, EMSO collects data concerning the following main scientific fields:[9]
Geosciences: gas hydrate stability, seabed fluid flows, sub-marine landslides, geo-hazard early warning, mid-ocean ridge volcanism.
Physical Oceanography: ocean warming, deep-ocean circulation, benthic and water-column interactions.
Biogeochemistry: ocean acidification and the solubility pump, the biological pump, hypoxia, continental shelf exchange, deep-ocean biogeochemical fluxes.
Marine Ecology: climate forcing of ecosystems, molecules to microbes, fisheries, marine noise, deep biosphere, chemosynthetic ecology.
EMSO ERIC
The Preparatory Phase of EMSO was funded by the European Seventh Framework Programme (FP7), involving 12 countries of the European area (Italy, France, Germany, Ireland, Spain, Sweden, Greece, UK, Norway, Portugal, Turkey, the Netherlands), and Romania (through GeoEcoMar), that has been involved as external interested country from 2010. The Preparatory Phase prepared the foundation for the adoption of the ERIC (European Research Infrastructure Consortium), that is the legal entity in charge of coordinating and facilitating access to these nodes of open ocean fixed point observatory distributed infrastructure.
EMSO ERIC is the central point of contact for observatory initiatives in other parts of the world to set up and promote cooperation in this field. EMSO ERIC integrates research, training, and information dissemination activities for ocean observatory nodes in Europe and enables scientists and other stakeholders to make efficient use of the EMSO distributed infrastructure around Europe.
Autonomous landers that can conduct experiments and gather data on the sea floor have the potential to revolutionise oceanographic research. By using a number of landers, the spatial and temporal coverage of a single ship can be increased by orders of magnitude. Joint experiments in the Porcupine zone with FP4 – MAST3 BENGAL project.
GEOSTAR 2
GEophysical and Oceanographic STation for Abyssal Research 2nd phase: Deep-sea Scientific Mission
The project developed an underwater network for shallow waters (600 m w.d.) able to communicate in two ways with the land through a surface buoy acoustically linked with the underwater systems. Experiment in Gulf of Corinth and Norwegian Fjord.
The project represented the passage from a single node to a constellation, and realized a deep-water network able to communicate in underwater via acoustics with a main node and this main to communicate always via acoustics with a relay surface buoy linked to land via radio and satellite. ORION realized one of the first example of a near-real-time deep-sea network. Experiment in Gulf of Corinth.
ESONET-CA
European Seafloor Observatory Network-Concerted Action
Technological development of a specific instrumentation allowing the study of natural or accidentally perturbed ecosystems found in the deep ocean. Experiment in MoMar Azores site.
ESONIM
European Seafloor Observatories Implementation Model
NEAREST activities included land investigations in areas of Portugal affected in the past by run-up of tsunamis, inundation maps, oceanographic campaigns for defining specific and reliable velocity models to be used in earthquake localizations, 1-year OBS campaign to detect seismic activity. In particular, INGV was in charge of the deposition for almost 2 years in near-source area in the Gulf of Cadiz at over 3200 m w.d. of a GEOSTAR-type multidisciplinary observatory, specifically enhanced with a prototypal system of Tsunami Early Warning.
ESONET-NoE
European Seafloor Observatory Network-Network of Excellence
Integration of the scientific/technological “Observatory Science” Community. Demonstration missions in Haakon Mosby mud volcano, Arctic Ocean Fram Strait, Porcupine Abyssal Plain, Momar Azores, West Ionian Sea, Gulf of Cadiz, Marmara Sea, Ligurian Sea.
EuroSITES
Integration and enhancement of key existing European deep-ocean observatories
2008-2011
FP7 - Environment
NERC
Ehttps://cordis.europa.eu/project/id/202955/
Water-column observatories in Europe, related to OceanSites. Building agreed methods to collect time series of basic variables and common data protocols for real time and delayed mode observation. Complete ocean observatory data management system.
ENVRI
Common Operations of Environmental Research Infrastructures
The project had as the main goal to increase in-situ monitoring systems for oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies (such as lagoons) to better understand the global change effects on this phenomenon.
MARSITE
New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite
The project included several research groups with different scientific background (from seismology to engineering, from geophysics to geochemistry) in multidisciplinary monitoring activities in the Marmara Sea (considered a Supersite for the seismology).
The project aimed at implementing a sustainable cooperation between Europe and USA in the field of the environmental infrastructures, putting into relation homologous infrastructures to develop common policies, interoperability and synergies.
EMSODEV
EMSO implementation and operation: DEVelopment of instrument module
EMSODEV is focused on development of EGIMs (EMSO Generic Instrument Modules) to ensure increased coordination, integration, interoperability and standardization across sites and disciplines, and of a DMP (Data Management Platform) to guarantee the data accessibility to the scientific users and stakeholders.
ENVRI-PLUS
supporting environmental research with integrated solutions
ENVRI-PLUS was a cluster of research infrastructures (RIs) for Environmental and Earth System sciences, built around ESFRI roadmap and associating leading e-infrastructures and Integrating Activities together with technical specialist partners. It included a marine domain where EMSO played a key role.
COOP+ (or COOP_PLUS)
Cooperation of Research Infrastructures to address global challenges in the environmental field
The general goal was to strengthen the links and coordination of the European RIs related to Marine Science (EMSO), Arctic and Atmospheric Research (EISCAT), Carbon Observation (ICOS) and Biodiversity (LifeWatch) with international counterparts (NEON, TERN, AMISR/SRI, CGSM, OOI, INPA/LBA, IMOS, ONC, AMERIFLUX, etc.) and to leverage international scientific cooperation and data exchange with non-EU countries.
DANUBIUS-PP
PREPARATORY PHASE FOR THE PAN-EUROPEAN RESEARCH INFRASTRUCTURE DANUBIUS–RI “THE INTERNATIONAL CENTRE FOR ADVANCED STUDIES ON RIVER-SEA SYSTEMS
2016-2019
H2020-EU.1.4.1.1.
INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU GEOLOGIE SI GEOECOLOGIE MARINA-GEOECOMAR
DANUBIUS-PP is a three-year project to raise DANUBIUS-RI (International Centre for Advanced Studies on River-Sea Systems) to the legal, financial and technical maturity required for successful implementation and development. DANUBIUS-RI is a pan-European distributed research infrastructure (RI) building on existing expertise to support interdisciplinary research on river-sea (RS) systems, spanning the environmental, social and economic sciences.
EMSO-Link
Implementation of the Strategy to ensure the EMSO ERIC Long-term Sustainability
The overarching goal is that at the end of the project, all participating Research Infrastructures have built a set of FAIR data services which enhances the efficiency and productivity of researchers, supports innovation, enables data- and knowledge-based decisions and connects the ENVRI Cluster to the EOSC
ENRIITC
European Network of Research Infrastructures & IndusTry for Collaboration
It will build a permanent network of Industrial Liaison and Contact Officers (ILOs and ICOs) to maximise their engagement and boost the research infrastructures-industry partnerships.
EurofleetsPlus
An alliance of European marine research infrastructure to meet the evolving needs of the research and industrial communities.
EurofleetsPlus will facilitate open access to an integrated and advanced research vessel fleet, designed to meet the evolving and challenging needs of the user community. European and international researchers from academia and industry will be able to apply for several access programmes, through a single-entry system.
^Paolo Favali, and Laura Beranzoli. "EMSO: European multidisciplinary seafloor observatory." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602.1 (2009): 21-27.
^Ruhl, Henry A., et al. "Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas." Progress in Oceanography 91.1 (2011): 1-33.