Eugene Lawler
Eugene Leighton (Gene) Lawler (1933 – September 2, 1994) was an American computer scientist and a professor of computer science at the University of California, Berkeley.[1][2] Academic lifeLawler came to Harvard as a graduate student in 1954, after a three-year undergraduate B.S. program in mathematics at Florida State University. He received a master's degree in 1957,[2] and took a hiatus in his studies, during which he briefly went to law school and worked in the U.S. Army, at a grinding wheel company,[3] and as an electrical engineer at Sylvania from 1959 to 1961.[2][4] He returned to Harvard in 1958, and completed his Ph.D. in applied mathematics in 1962 under the supervision of Anthony G. Oettinger with a dissertation entitled Some Aspects of Discrete Mathematical Programming.[1][2][5] He then became a faculty member at the University of Michigan until 1971, when he moved to Berkeley.[2] He retired in 1994, shortly before his death.[6] At Berkeley, Lawler's doctoral students included Marshall Bern, Chip Martel, Arvind Raghunathan, Arnie Rosenthal, Huzur Saran, David Shmoys, and Tandy Warnow.[5][7] ResearchLawler was an expert on combinatorial optimization and a founder of the field,[8] the author of the widely used textbook Combinatorial Optimization: Networks and Matroids and coauthor of The Traveling Salesman Problem: a guided tour of combinatorial optimization. He played a central role in rescuing the ellipsoid method for linear programming from obscurity in the West.[1][9] He also wrote (with D. E. Wood) a heavily cited 1966 survey on branch and bound algorithms,[10] selected as a citation classic in 1987,[2] and another influential early paper on dynamic programming with J. M. Moore.[2][11] Lawler was also the first to observe that matroid intersection can be solved in polynomial time.[1][12] The NP-completeness proofs for two of Karp's 21 NP-complete problems, directed Hamiltonian cycle and 3-dimensional matching, were credited by Karp to Lawler.[1] The NP-completeness of 3-dimensional matching is an example of one of Lawler's favorite observations, the "mystical power of twoness":[1] for many combinatorial optimization problems that can be parametrized by an integer, the problem can be solved in polynomial time when the parameter is two but becomes NP-complete when the parameter is three. For 3-dimensional matching, the solvable parameter-2 version of the problem is graph matching; the same phenomenon arises in the complexities of 2-coloring and 3-coloring for graphs, in the matroid intersection problem for intersections of two or three matroids, and in 2-SAT and 3-SAT for satisfiability problems. Lenstra[1] writes that "Gene would invariably comment that this is why a world with two sexes has been devised." During the 1970s, Lawler made great headway in systematizing algorithms for job shop scheduling.[1] His 1979 survey on the subject introduced the three-field notation for theoretic scheduling problems, which (despite the existence of earlier notations) became standard in the study of scheduling algorithms.[13][14] Another later survey is also highly cited (over 1000 citations each in Google scholar).[15] In the late 1980s, Lawler shifted his research focus to problems of computational biology, including the reconstruction of evolutionary trees and several works on sequence alignment.[2] Social activismIn Spring 1969, while on sabbatical in Berkeley, Lawler took part in a protest against the Vietnam War that led to the arrests of 483 protesters, including Lawler;[3] Richard Karp bailed him out.[6] Karp recalls Lawler as "the social conscience of the CS Division, always looking out for the welfare of students and especially concerned for women, minorities and handicapped students".[6] Awards and honorsA special issue of the journal Mathematical Programming (vol. 82, issues 1–2) was dedicated in Lawler's honor in 1998.[8] The ACM Eugene L. Lawler Award is given by the Association for Computing Machinery every two years for "humanitarian contributions within computer science and informatics".[16] Books
References
External links
|