Energy density Extended Reference Table
This is an extended version of the energy density table from the main Energy density page:
Energy densities table
Storage type
Specific energy (MJ /kg)
Energy density (MJ/L )
Peak recovery efficiency %
Practical recovery efficiency %
Arbitrary Antimatter
89,875,517,874
depends on density
Deuterium–tritium fusion
576,000,000[ 1]
Uranium-235 fissile isotope
144,000,000[ 1]
1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor
86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor
3,456,000
35%
Pu-238 α-decay
2,200,000
Hf-178m2 isomer
1,326,000
17,649,060
Natural uranium (0.7% U235) in light-water reactor
443,000
35%
Ta-180m isomer
41,340
689,964
Metallic hydrogen (recombination energy)
216[ 2]
Specific orbital energy of Low Earth orbit (approximate)
33.0
Beryllium + Oxygen
23.9[ 3]
Lithium + Fluorine
23.75[citation needed ]
Octaazacubane potential explosive
22.9[ 4]
Hydrogen + Oxygen
13.4[ 5]
Gasoline + Oxygen –> Derived from Gasoline
13.3[citation needed ]
Dinitroacetylene explosive - computed[citation needed ]
9.8
Octanitrocubane explosive
8.5[ 6]
16.9[ 7]
Tetranitrotetrahedrane explosive - computed[citation needed ]
8.3
Heptanitrocubane explosive - computed[citation needed ]
8.2
Sodium (reacted with chlorine)[citation needed ]
7.0349
Hexanitrobenzene explosive
7[ 8]
Tetranitrocubane explosive - computed[citation needed ]
6.95
Ammonal (Al+NH4 NO3 oxidizer )[citation needed ]
6.9
12.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed ]
6.6
Nitroglycerin
6.38[ 9]
10.2[ 10]
ANFO -ANNM [citation needed ]
6.26
battery, Lithium–air
6.12
Octogen (HMX)
5.7[ 9]
10.8[ 11]
TNT [ 12]
4.610
6.92
Copper Thermite (Al + CuO as oxidizer )[citation needed ]
4.13
20.9
Thermite (powder Al + Fe2 O3 as oxidizer )
4.00
18.4
Hydrogen peroxide decomposition (as monopropellant )
2.7
3.8
battery, Lithium-ion nanowire
2.54
29
95%[clarification needed ] [ 13]
battery, Lithium Thionyl Chloride (LiSOCl2) [ 14]
2.5
Water 220.64 bar, 373.8 °C[citation needed ] [clarification needed ]
1.968
0.708
Kinetic energy penetrator [clarification needed ]
1.9
30
battery, Lithium–Sulfur [ 15]
1.80[ 16]
1.26
battery, Fluoride-ion [citation needed ]
1.7
2.8
battery, Hydrogen closed cycle H fuel cell [ 17]
1.62
Hydrazine decomposition (as monopropellant )
1.6
1.6
Ammonium nitrate decomposition (as monopropellant )
1.4
2.5
Thermal Energy Capacity of Molten Salt
1[citation needed ]
98%[ 18]
Molecular spring approximate[citation needed ]
1
battery, Lithium–Manganese [ 19] [ 20]
0.83-1.01
1.98-2.09
battery, Sodium–Sulfur
0.72[ 21]
1.23[citation needed ]
85%[ 22]
battery, Lithium-ion [ 23] [ 24]
0.46-0.72
0.83-3.6[ 25]
95%[ 26]
battery, Sodium–Nickel Chloride , High Temperature
0.56
battery, Zinc–manganese (alkaline) , long life design[ 19] [ 23]
0.4-0.59
1.15-1.43
battery, Silver-oxide [ 19]
0.47
1.8
Flywheel
0.36-0.5[ 27] [ 28]
5.56 × 45 mm NATO bullet muzzle energy density[clarification needed ]
0.4
3.2
battery, Nickel–metal hydride (NiMH) , low power design as used in consumer batteries[ 29]
0.4
1.55
Liquid Nitrogen
0.349
Water – Enthalpy of Fusion
0.334
0.334
battery, Zinc–Bromine flow (ZnBr) [ 30]
0.27
battery, Nickel–metal hydride (NiMH) , High-Power design as used in cars[ 31]
0.250
0.493
battery, Nickel–Cadmium (NiCd) [ 23]
0.14
1.08
80%[ 26]
battery, Zinc–Carbon [ 23]
0.13
0.331
battery, Lead–acid [ 23]
0.14
0.36
battery, Vanadium redox
0.09[citation needed ]
0.1188
70 70-75%
battery, Vanadium–Bromide redox
0.18
0.252
80%–90%[ 32]
Capacitor Ultracapacitor
0.0199[ 33]
0.050[citation needed ]
Capacitor Supercapacitor
0.01[citation needed ]
80%–98.5%[ 34]
39%–70%[ 34]
Superconducting magnetic energy storage
0
0.008[ 35]
>95%
Capacitor
0.002[ 36]
Neodymium magnet
0.003[ 37]
Ferrite magnet
0.0003[ 37]
Spring power (clock spring), torsion spring
0.0003[ 38]
0.0006
Storage type
Energy density by mass (MJ/kg)
Energy density by volume (MJ/L )
Peak recovery efficiency %
Practical recovery efficiency %
Notes
^ a b Prelas, Mark (2015). Nuclear-Pumped Lasers . Springer. p. 135. ISBN 9783319198453 .
^ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf [bare URL PDF ]
^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society . 75 (13): 3102–3103. doi :10.1021/ja01109a018 .
^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry . 35 (24): 7124–7133. doi :10.1021/ic9606237 . PMID 11666896 .
^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF) . Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021 .
^ Wiley Interscience
^ Octanitrocubane
^ Wiley Interscience
^ a b "Chemical Explosives" . Fas.org. 2008-05-30. Retrieved 2010-05-07 .
^ Nitroglycerin
^ HMX
^ Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air . Springer-Verlag . ISBN 978-3-540-15147-0 .
^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery" . News-service.stanford.edu. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07 .
^ "Lithium Thionyl Chloride Batteries" . Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07 .
^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF) . Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry . 44 (5): 506–509. doi :10.1134/s1023193508050029 . S2CID 97022927 .
^ "The Unitized Regenerative Fuel Cell" . Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07 .
^ "Technology" . SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07 .
^ a b c "ProCell Lithium battery chemistry" . Duracell . Archived from the original on 2011-07-10. Retrieved 2009-04-21 .
^ "Properties of non-rechargeable lithium batteries" . corrosion-doctors.org. Retrieved 2009-04-21 .
^ "New battery could change world, one house at a time" . Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07 .
^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States) . 2 . Osti.gov. OSTI 5960185 .
^ a b c d e "Battery energy storage in various battery types" . AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21 .
^ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4" . Archived from the original on 2008-12-01. Retrieved 2012-12-14 .
^ "Lithium Batteries" . Archived from the original on 2011-08-08. Retrieved 2010-07-02 .
^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF) . p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26 . Table 3: Input and Output Energy from Batteries
^ "Storage Technology Report, ST6 Flywheel" (PDF) . Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14 .
^ "Next-gen Of Flywheel Energy Storage" . Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21 .
^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF) . Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14 .
^ "ZBB Energy Corp" . Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF) . Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07 .
^ "Maxwell Technologies: Ultracapacitors - BCAP3000" . Maxwell.com. Retrieved 2010-05-07 .
^ a b "Archived copy" (PDF) . Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14 .{{cite web }}
: CS1 maint: archived copy as title (link )
^ [1] Archived February 16, 2010, at the Wayback Machine
^ "Department of Computing" . Archived from the original on 2006-10-06. Retrieved 2012-12-14 .
^ a b "Archived copy" (PDF) . Archived from the original (PDF) on 2011-05-13. Retrieved 2012-12-14 .{{cite web }}
: CS1 maint: archived copy as title (link )
^ "Garage Door Springs" . Garagedoor.org. Retrieved 2010-05-07 .