ESA PANGAEAPANGAEA (Planetary Analogue Geological and Astrobiological Exercise for Astronauts) is an astronaut training course developed by the European Space Agency (ESA). It provides foundational knowledge and skills primarily in field geology to prepare astronauts for advanced mission-specific training for Moon and Mars missions. PANGAEA also incorporates the development and testing of technologies to support planetary exploration.[1][2][3][4] Field training locationsDuring the PANGAEA course, trainees travel to several terrestrial locations that are analogous to some of the geological environments on the Moon and Mars.[5][6] Bletterbach Canyon, ItalyBletterbach Canyon is part of the Italian Dolomites region. Here, PANGAEA trainees learn the basics of field geology, with some focus on terrestrial and Martian sedimentary geological and surface processes. This is aided by the presence of geological features within the canyon, such as gypsum veins, sedimentary deposits (e.g., fossilised rivers and seabeds) and volcanic bodies, which are analogous to similar features observed on Mars.[7] The Bletterbach Canyon portion of the PANGAEA course is made possible due to collaboration with the GEOPARC Bletterbach team. Nördlinger Ries Crater, GermanyNördlinger Ries Crater is an approximately 15 million years old impact crater located in western Bavaria, Germany. Here, PANGAEA instructors use the crater to teach trainees about the rocks and minerals created by such impacts (e.g., shocked quartz), and the large-scale structure of such locations. Impact craters are ubiquitous on the Moon and Mars; therefore, it is important that astronauts are familiar with them. The Apollo 14 and 17 astronauts also studied the geology of Nördlinger Ries crater in 1970.[8] The training at Ries Crater is made possible with the help of the Rieskrater Museum. Lanzarote, SpainLanzarote is a small volcanic island off the coast of West Africa, with numerous volcanic edifices, lava flows, and lava tubes, similar to those seen on the Moon and Mars. Here, PANGAEA trainees study primary igneous minerals, alteration minerals, and practice operational concepts, such as geological traverses and sampling techniques in coordination with remote science teams.[9][10] The samples collected during several of these geological traverses have real scientific value, and are sent to researchers to help understand more about these environments. The Lanzarote based portion of the PANGAEA course is made possible due to collaboration with the Cabildo of Lanzarote, the Lanzarote and Chinijo Islands UNESCO GEOPARC, and IGEO’s Laboratory of Geosciences. Lofoten, NorwayLofoten is an archipelago in northern Norway. The region contains rare anorthosite formations, a major constituent of the lunar highlands. In this location, astronauts have the opportunity to deepen their knowledge on intrusive rocks with a special focus on the evolution of the primary crust and mantle of the Moon. The training session is designed around a series of geological traverses with increasing complexity and crew autonomy. This part of PANGAEA has been developed with the support of the Norwegian Mining Museum in Oslo. Technology development and testingSeveral technologies support PANGAEA's core training focus, and have been evolved into other projects outside the training. An example of this is the Electronic Field Book (EFB), which supports the course’s core training activities whilst being developed for use in future planetary exploration.[11] The EFB is a field support tool that uses a range of portable devices to collect and integrate astronaut’s observations, such as photos and notes, with maps, 3D models, real-time positioning, voice-chat, and data from an array of external sensors, and provides it to the ground team who are then able to interacted with the data to provide remote support. The EFB also integrates a mineral recognition system developed within the PANGAEA team for the automatic interpretation of results from portable spectrometers in real-time using machine learning techniques[12] and bespoke databases[13] to provide enhanced decision-support. PANGAEA has also acted as a testing ground for technologies developed outside of the core team. In 2023, NASA and ESA collaborated to test the HULC (Handheld Universal Lunar Camera) system during the PANGAEA training, the next camera to be taken to the Moon during the Artemis missions.[14][15][16] PANGAEA has also run separate campaigns focused exclusively on technology development.[17][18] PANGAEA-X ran for five days in November 2017 and 2018, during each it mobilised up to 50 people, four space agencies, and 18 organisations. Some of the main categories of technology tested during PANAGAEA-X are listed below:[13][18][19][20][21][22]
PANGAEA participantsPANGAEA has trained astronauts and cosmonauts from ESA, NASA, JAXA, and Roscosmos, including several from the Artemis Team.[23] PANGAEA 2016
PANGAEA 2017
PANGAEA 2018
PANGAEA 2021-2022
PANGAEA 2022-2023
Lofoten session[24]
PANGAEA 2023
PANGAEA 2024
References
|
Portal di Ensiklopedia Dunia