Stainless steel that has both austenitic and ferritic phases
An ingot of 2507 duplex stainless steel
Duplex stainless steels[1][2][3][4][5] are a family of stainless steels. These are called duplex (or austenitic-ferritic) grades because their metallurgical structure consists of two phases, austenite (face-centered cubic lattice) and ferrite (body centered cubic lattice) in roughly equal proportions.
They provide better corrosion resistance, particularly chloride stress corrosion and chloride pitting corrosion, and higher strength than standard austenitic stainless steels such as A2/304 or A4/316. The main differences in composition, when compared with austenitic stainless steel is that duplex steels have a higher chromium content, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen. Both the low nickel content and the high strength (enabling thinner sections to be used) give significant cost benefits. Duplex steels also have higher strength. For example, a Type 304 stainless steel has a 0.2% proof strength in the region of 280 MPa (41 ksi), a 22%Cr duplex stainless steel a minimum 0.2% proof strength of some 450 MPa (65 ksi) and a superduplex grade a minimum of 550 MPa (80 ksi).[6]
Duplex steels are used extensively in the offshore oil and gas industry for pipework systems, manifolds, risers, etc. and in the petrochemical industry for pipelines and pressure vessels.
Grades of duplex stainless steels
Microstructures of four kinds of duplex stainless steel in each direction
Duplex stainless steels are usually divided into three groups based on their pitting corrosion resistance, characterised by the pitting resistance equivalence number, PREN = %Cr + 3.3 %Mo + 16 %N.[7]
Standard duplex (PREN range: 28–38)
Typically Grade EN 1.4462 (also called 2205). It is typical of the mid-range of properties and is perhaps the most used today
Super-duplex (PREN range: 38–45)
Typically grade EN 1.4410 up to so-called hyper duplex grades (PREN: >45) developed later to meet specific demands of the oil and gas as well as those of the chemical industries. They offer a superior corrosion resistance and strength but are more difficult to process because the higher contents of Cr, Mo, N and even W promote the formation of intermetallic phases, which reduce drastically the impact resistance of the steel. Faulty processing will result in poor performance and users are advised to deal with reputable suppliers/processors.[8] Applications include deepwater offshore oil production.
Lean duplex grades (PREN range: 22–27)
Typically grade EN 1.4362, have been developed more recently for less demanding applications, particularly in the building and construction industry. Their corrosion resistance is closer to that of the standard austenitic grade EN 1.4401 (with a plus on resistance to stress corrosion cracking) and their mechanical properties are higher. This can be a great advantage when strength is important. This is the case in bridges, pressure vessels or tie bars.
Chemical compositions
Chemicals composition of grades from EN 10088-1 (2014) Standard are given in the table below:[9]
Electron backscatter diffraction map of 128 hrs age hardened duplex stainless steel with the ferrite phase forming the matrix and austenite grains sporadically spread. The ferrite phase volume fraction is 58%.[11]
EBSD map with austenite grains excluded (white). The scale bar is 500 μm. Colours denote the crystal orientation and are taken from the inverse pole figure at the lower right corner.[12]
Duplex stainless is widely used in the industry because it possesses excellent oxidation resistance but can have limited toughness due to its large ferritic grain size, and they have hardened, and embrittlement tendencies at temperatures ranging from 280 to 500 °C, especially at 475 °C, where spinodal decomposition of the supersaturated solid ferrite solution into Fe-rich nanophase () and Cr-rich nanophase (), accompanied by G-phase precipitation, occurs,[13][14][15] which makes the ferrite phase a preferential initiation site for micro-cracks.[16]
Heat treatment
Recommended hot forming and annealing/soaking temperatures
UNS No. Grade
EN No.
Hot forming temperature range
Minimum soaking temperature
S32304
1.4362
1,150 to 950 °C (2,100 to 1,740 °F)
980 °C (1,800 °F)
S32205
1.4462
1,230 to 950 °C (2,250 to 1,740 °F)
1,040 °C (1,900 °F)
S32750
1.4410
1,235 to 1,025 °C (2,255 to 1,877 °F)
1,050 °C (1,920 °F)
S32520
1.4507
1,230 to 1,000 °C (2,250 to 1,830 °F)
1,080 °C (1,980 °F)
S32760
1.4501
1,230 to 1,000 °C (2,250 to 1,830 °F)
1,100 °C (2,010 °F)
Duplex stainless steel grades must be cooled as quickly as possible to room temperature after hot forming to avoid the precipitation of intermetallic phases (Sigma phase in particular) which drastically reduce the impact resistance at room temperature as well as the corrosion resistance.[17]
Alloying elements Cr, Mo, W, Si increase the stability and the formation of intermetallic phases. Therefore, super duplex grades have a higher hot working temperature range and require faster cooling rates than the lean duplex grades.
Applications of duplex stainless steels
Duplex stainless steels are usually selected for their high mechanical properties and good to very high corrosion resistance (particularly to stress corrosion cracking).