The tyrosine–tyrosine crosslink can form by ultraviolet irradiation and other conditions that induce radical formation.[4] Proteins with calciumbinding sites consisting of two tyrosine residues, such as calmodulin and troponin C, are especially prone to this reaction as a result of coordination of their phenol groups to a calcium ion. The monomer and dimer have different emission wavelengths, which can complicate fluorescence spectroscopic analysis of tyrosine-containing proteins.[5] Conversely, the specific fluorescence of dityrosine allows simple detection of it. In particular, resilin can easily be visualized in whole organisms.[6]
^Malencik, D. A.; Anderson, S. R. (1991). "Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion". Biochem. Biophys. Res. Commun. 178 (1): 60–67. doi:10.1016/0006-291x(91)91779-c. PMID2069580.
^ abMalencik, Dean A.; Sprouse, James F.; Swanson, Chris A.; Anderson, Sonia R. (1996). "Dityrosine: preparation, isolation, and analysis". Anal Biochem. 242 (2): 202–213. doi:10.1006/abio.1996.0454.
^Malencik, Dean A.; Anderson, Sonia R. (1987). "Dityrosine formation in calmodulin". Biochemistry. 26 (3): 695–704. doi:10.1021/bi00377a006.
^Elvin, Christopher M.; Carr, Andrew G.; Huson, Mickey G. G; Maxwell, JM; Pearson, Roger D.; Vuocolo, Tony; Liyou, Nancy E.; Wong, Darren C. C.; Merritt, David J.; Dixon, Nicholas E. (October 2005). "Synthesis and properties of crosslinked recombinant pro-resilin". Nature. 437 (7061): 999–1002. Bibcode:2005Natur.437..999E. doi:10.1038/nature04085. PMID16222249. S2CID4411986.
^DiMarco, Theresa; Giulivi, Cecilia (2007). "Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples". Mass Spectrometry Reviews. 26 (1): 108–120. doi:10.1002/mas.20109.