Developable surface![]() In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression). Conversely, it is a surface which can be made by transforming a plane (i.e. "folding", "bending", "rolling", "cutting" and/or "gluing"). Because of these properties, developable surfaces are widely used in the design and fabrication of items to be made from sheet materials, ranging from textiles to sheet metal such as ductwork to shipbuilding.[1] In three dimensions all developable surfaces are ruled surfaces (but not vice versa). There are developable surfaces in four-dimensional space which are not ruled.[2] The envelope of a single parameter family of planes is called a developable surface. ParticularsThe developable surfaces which can be realized in three-dimensional space include:
Formally, in mathematics, a developable surface is a surface with zero Gaussian curvature. One consequence of this is that all "developable" surfaces embedded in 3D-space are ruled surfaces (though hyperboloids are examples of ruled surfaces which are not developable). Because of this, many developable surfaces can be visualised as the surface formed by moving a straight line in space. For example, a cone is formed by keeping one end-point of a line fixed whilst moving the other end-point in a circle. Application![]() Developable surfaces have several practical applications. Many cartographic projections involve projecting the Earth to a developable surface and then "unrolling" the surface into a region on the plane. Since developable surfaces may be constructed by bending a flat sheet, they are also important in manufacturing objects from sheet metal, cardboard, and plywood. An industry which uses developed surfaces extensively is shipbuilding.[4] Developable Mechanisms are mechanisms that conform to a developable surface and can exhibit motion (deploy) off the surface.[5][6] Non-developable surfaceMost smooth surfaces (and most surfaces in general) are not developable surfaces. Non-developable surfaces are variously referred to as having "double curvature", "doubly curved", "compound curvature", "non-zero Gaussian curvature", etc. Some of the most often-used non-developable surfaces are:
Applications of non-developable surfacesMany gridshells and tensile structures and similar constructions gain strength by using (any) doubly curved form. See alsoReferences
External linksWikimedia Commons has media related to Developable surfaces. |
Portal di Ensiklopedia Dunia