Toggle torque wrenches (friction-style) and beam wrenches (spring-style) are the most common types in dentistry as manual mechanical torque-limiting devices.[3] Beam type wrenches in general are more consistent to its calibration than toggle types. The beam types with a dial indicator are the most precise to set the Tare torque (zero point reset). Because steam sterilization processes like an autoclave are applied to the dental torque wrenches and the length of time in use presents stress on the material, fatigue can occur.[4]
Surgical motor
The surgical motor[5] is an electronic controlled torque-limiting device that also controls the speed. It is used with a twisted drill[6] to make space in the bone for the implant or to fasten the screw (torque control can be with a torque-limiting attachment) with a screwdriver bit.
In high precision areas such as aerospace applications motor or pneumatic torque wrenches are set at a lower torque value after which the final torque is set with a manual mechanical torque wrench, they are calibrated before every use, if a wrench breaks or loses calibration every fastener done with that wrench is redone.
Calibration
Various studies point to deviations of 10% and higher than the desired torque, regular recalibration with a torque tester restores the required torque values.[7]
Re-torquing
As the settling effect[8] (the flattening of the material's micro-surface under pressure) causes a lesser torque of around 10% in a relative short time, re-torquing the fastener after 10 minutes reduces this effect[9] as the parts get more seated.
Wet and dry torque
Wet torques (bolts lubricated with saliva) have a higher mean torque than dry torques (unlubricated).[10]
^McCracken, Michael S.; Mitchell, Lillian; Hegde, Rashmi; Mavalli, Mahendra D. (2010). "Variability of Mechanical Torque-Limiting Devices in Clinical Service at a US Dental School". Journal of Prosthodontics. 19 (1): 20–24. doi:10.1111/j.1532-849X.2009.00524.x. ISSN1059-941X. PMID19765196.
^Neugebauer, J; Scheer, M; Mischkowski, R. A.; An, S. H.; Karapetian, V. E.; Toutenburg, H; Zoeller, J. E. (2009). "Comparison of torque measurements and clinical handling of various surgical motors". The International Journal of Oral & Maxillofacial Implants. 24 (3): 469–76. PMID19587869.
^Nher, H; Lamminger, C; Zimmermann, J; Petzoldt, D (1991). "The value of symptoms and clinical findings in cervical Chlamydia trachomatis infection". Der Hautarzt; Zeitschrift für Dermatologie, Venerologie, und Verwandte Gebiete. 42 (11): 687–91. PMID1769832.
^Kim, K. S.; Lim, Y. J.; Kim, M. J.; Kwon, H. B.; Yang, J. H.; Lee, J. B.; Yim, S. H. (2011). "Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection". Clinical Oral Implants Research. 22 (8): 834–9. doi:10.1111/j.1600-0501.2010.02063.x. PMID21198900.