Mathematical function
In mathematics , the family of Debye functions is defined by
D
n
(
x
)
=
n
x
n
∫
0
x
t
n
e
t
−
1
d
t
.
{\displaystyle D_{n}(x)={\frac {n}{x^{n}}}\int _{0}^{x}{\frac {t^{n}}{e^{t}-1}}\,dt.}
The functions are named in honor of Peter Debye , who came across this function (with n = 3) in 1912 when he analytically computed the heat capacity of what is now called the Debye model .
Mathematical properties
Relation to other functions
The Debye functions are closely related to the polylogarithm .
Series expansion
They have the series expansion[ 1]
D
n
(
x
)
=
1
−
n
2
(
n
+
1
)
x
+
n
∑
k
=
1
∞
B
2
k
(
2
k
+
n
)
(
2
k
)
!
x
2
k
,
|
x
|
<
2
π
,
n
≥
1
,
{\displaystyle D_{n}(x)=1-{\frac {n}{2(n+1)}}x+n\sum _{k=1}^{\infty }{\frac {B_{2k}}{(2k+n)(2k)!}}x^{2k},\quad |x|<2\pi ,\ n\geq 1,}
where
B
n
{\displaystyle B_{n}}
is the n -th Bernoulli number .
Limiting values
lim
x
→
0
D
n
(
x
)
=
1.
{\displaystyle \lim _{x\to 0}D_{n}(x)=1.}
If
Γ
{\displaystyle \Gamma }
is the gamma function and
ζ
{\displaystyle \zeta }
is the Riemann zeta function , then, for
x
≫
0
{\displaystyle x\gg 0}
,[ 2]
D
n
(
x
)
=
n
x
n
∫
0
x
t
n
d
t
e
t
−
1
∼
n
x
n
Γ
(
n
+
1
)
ζ
(
n
+
1
)
,
Re
n
>
0
,
{\displaystyle D_{n}(x)={\frac {n}{x^{n}}}\int _{0}^{x}{\frac {t^{n}\,dt}{e^{t}-1}}\sim {\frac {n}{x^{n}}}\Gamma (n+1)\zeta (n+1),\qquad \operatorname {Re} n>0,}
Derivative
The derivative obeys the relation
x
D
n
′
(
x
)
=
n
(
B
(
x
)
−
D
n
(
x
)
)
,
{\displaystyle xD_{n}^{\prime }(x)=n\left(B(x)-D_{n}(x)\right),}
where
B
(
x
)
=
x
/
(
e
x
−
1
)
{\displaystyle B(x)=x/(e^{x}-1)}
is the Bernoulli function.
Applications in solid-state physics
The Debye model
The Debye model has a density of vibrational states
g
D
(
ω
)
=
9
ω
2
ω
D
3
,
0
≤
ω
≤
ω
D
{\displaystyle g_{\text{D}}(\omega )={\frac {9\omega ^{2}}{\omega _{\text{D}}^{3}}}\,,\qquad 0\leq \omega \leq \omega _{\text{D}}}
with the Debye frequency ω D .
Internal energy and heat capacity
Inserting g into the internal energy
U
=
∫
0
∞
d
ω
g
(
ω
)
ℏ
ω
n
(
ω
)
{\displaystyle U=\int _{0}^{\infty }d\omega \,g(\omega )\,\hbar \omega \,n(\omega )}
with the Bose–Einstein distribution
n
(
ω
)
=
1
exp
(
ℏ
ω
/
k
B
T
)
−
1
.
{\displaystyle n(\omega )={\frac {1}{\exp(\hbar \omega /k_{\text{B}}T)-1}}.}
one obtains
U
=
3
k
B
T
D
3
(
ℏ
ω
D
/
k
B
T
)
.
{\displaystyle U=3k_{\text{B}}T\,D_{3}(\hbar \omega _{\text{D}}/k_{\text{B}}T).}
The heat capacity is the derivative thereof.
Mean squared displacement
The intensity of X-ray diffraction or neutron diffraction at wavenumber q is given by the Debye-Waller factor or the Lamb-Mössbauer factor .
For isotropic systems it takes the form
exp
(
−
2
W
(
q
)
)
=
exp
(
−
q
2
⟨
u
x
2
⟩
)
.
{\displaystyle \exp(-2W(q))=\exp \left(-q^{2}\langle u_{x}^{2}\rangle \right).}
In this expression, the mean squared displacement refers to just once Cartesian component ux of the vector u that describes the displacement of atoms from their equilibrium positions.
Assuming harmonicity and developing into normal modes,[ 3]
one obtains
2
W
(
q
)
=
ℏ
2
q
2
6
M
k
B
T
∫
0
∞
d
ω
k
B
T
ℏ
ω
g
(
ω
)
coth
ℏ
ω
2
k
B
T
=
ℏ
2
q
2
6
M
k
B
T
∫
0
∞
d
ω
k
B
T
ℏ
ω
g
(
ω
)
[
2
exp
(
ℏ
ω
/
k
B
T
)
−
1
+
1
]
.
{\displaystyle 2W(q)={\frac {\hbar ^{2}q^{2}}{6Mk_{\text{B}}T}}\int _{0}^{\infty }d\omega {\frac {k_{\text{B}}T}{\hbar \omega }}g(\omega )\coth {\frac {\hbar \omega }{2k_{\text{B}}T}}={\frac {\hbar ^{2}q^{2}}{6Mk_{\text{B}}T}}\int _{0}^{\infty }d\omega {\frac {k_{\text{B}}T}{\hbar \omega }}g(\omega )\left[{\frac {2}{\exp(\hbar \omega /k_{\text{B}}T)-1}}+1\right].}
Inserting the density of states from the Debye model, one obtains
2
W
(
q
)
=
3
2
ℏ
2
q
2
M
ℏ
ω
D
[
2
(
k
B
T
ℏ
ω
D
)
D
1
(
ℏ
ω
D
k
B
T
)
+
1
2
]
.
{\displaystyle 2W(q)={\frac {3}{2}}{\frac {\hbar ^{2}q^{2}}{M\hbar \omega _{\text{D}}}}\left[2\left({\frac {k_{\text{B}}T}{\hbar \omega _{\text{D}}}}\right)D_{1}{\left({\frac {\hbar \omega _{\text{D}}}{k_{\text{B}}T}}\right)}+{\frac {1}{2}}\right].}
From the above power series expansion of
D
1
{\displaystyle D_{1}}
follows that the mean square displacement at high temperatures is linear in temperature
2
W
(
q
)
=
3
k
B
T
q
2
M
ω
D
2
.
{\displaystyle 2W(q)={\frac {3k_{\text{B}}Tq^{2}}{M\omega _{\text{D}}^{2}}}.}
The absence of
ℏ
{\displaystyle \hbar }
indicates that this is a classical result. Because
D
1
(
x
)
{\displaystyle D_{1}(x)}
goes to zero for
x
→
∞
{\displaystyle x\to \infty }
it follows that for
T
=
0
{\displaystyle T=0}
2
W
(
q
)
=
3
4
ℏ
2
q
2
M
ℏ
ω
D
{\displaystyle 2W(q)={\frac {3}{4}}{\frac {\hbar ^{2}q^{2}}{M\hbar \omega _{\text{D}}}}}
(zero-point motion ).
References
^ Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 27" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 998. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
^ Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. "3.411.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. pp. 355ff. ISBN 978-0-12-384933-5 . LCCN 2014010276 .
^ Ashcroft & Mermin 1976, App. L,
Further reading
Implementations
Ng, E. W.; Devine, C. J. (1970). "On the computation of Debye functions of integer orders" . Math. Comp . 24 (110): 405– 407. doi :10.1090/S0025-5718-1970-0272160-6 . MR 0272160 .
Engeln, I.; Wobig, D. (1983). "Computation of the generalized Debye functions delta(x,y) and D(x,y)". Colloid & Polymer Science . 261 : 736– 743. doi :10.1007/BF01410947 . S2CID 98476561 .
MacLeod, Allan J. (1996). "Algorithm 757: MISCFUN, a software package to compute uncommon special functions" . ACM Trans. Math. Software . 22 (3): 288– 301. doi :10.1145/232826.232846 . S2CID 37814348 . Fortran 77 code
Fortran 90 version
Maximon, Leonard C. (2003). "The dilogarithm function for complex argument". Proc. R. Soc. A . 459 (2039): 2807– 2819. Bibcode :2003RSPSA.459.2807M . doi :10.1098/rspa.2003.1156 . S2CID 122271244 .
Guseinov, I. I.; Mamedov, B. A. (2007). "Calculation of Integer and noninteger n-Dimensional Debye Functions using Binomial Coefficients and Incomplete Gamma Functions". Int. J. Thermophys . 28 (4): 1420– 1426. Bibcode :2007IJT....28.1420G . doi :10.1007/s10765-007-0256-1 . S2CID 120284032 .
C version of the GNU Scientific Library