φc is the intercorrelation of two discrete variables[2] and may be used with variables having two or more levels. φc is a symmetrical measure: it does not matter which variable we place in the columns and which in the rows. Also, the order of rows/columns does not matter, so φc may be used with nominal data types or higher (notably, ordered or numerical).
Cramér's V varies from 0 (corresponding to no association between the variables) to 1 (complete association) and can reach 1 only when each variable is completely determined by the other. It may be viewed as the association between two variables as a percentage of their maximum possible variation.
In R, the function cramerV() from the package rcompanion[4] calculates V using the chisq.test function from the stats package. In contrast to the function cramersV() from the lsr[5] package, cramerV() also offers an option to correct for bias. It applies the correction described in the following section.
Bias correction
Cramér's V can be a heavily biased estimator of its population counterpart and will tend to overestimate the strength of association. A bias correction, using the above notation, is given by[6]
where
and
Then estimates the same population quantity as Cramér's V but with typically much smaller mean squared error. The rationale for the correction is that under independence,
.[7]
^Sheskin, David J. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, Fl: CRC Press.
^Liebetrau, Albert M. (1983). Measures of association. Newbury Park, CA: Sage Publications. Quantitative Applications in the Social Sciences Series No. 32. (pages 15–16)
^Bergsma, Wicher (2013). "A bias correction for Cramér's V and Tschuprow's T". Journal of the Korean Statistical Society. 42 (3): 323–328. doi:10.1016/j.jkss.2012.10.002.