Coralline algae

Coralline algae
Temporal range: Ordovician–recent[1][2][3]
Spongites yendoi together with the gardening limpet Scutellastra cochlear
Scientific classification Edit this classification
(unranked): Archaeplastida
Division: Rhodophyta
Class: Florideophyceae
Subclass: Corallinophycidae
Order: Corallinales
Silva & Johansen, 1986[4]
Families and subfamilies

Coralline algae are red algae in the order Corallinales. They are characterized by a thallus that is hard because of calcareous deposits contained within the cell walls. The colors of these algae are most typically pink, or some other shade of red, but some species can be purple, yellow, blue, white, or gray-green. Coralline algae play an important role in the ecology of coral reefs. Sea urchins, parrot fish, and limpets and chitons (both mollusks) feed on coralline algae. In the temperate Mediterranean Sea, coralline algae are the main builders of a typical algal reef, the Coralligène ("coralligenous").[5] Many are typically encrusting and rock-like, found in marine waters all over the world. Only one species lives in freshwater.[6] Unattached specimens (maerl, rhodoliths) may form relatively smooth compact balls to warty or fruticose thalli.

A close look at almost any intertidal rocky shore or coral reef will reveal an abundance of pink to pinkish-grey patches, distributed throughout the rock surfaces. These patches of pink "paint" are actually living crustose coralline red algae. The red algae belong to the division Rhodophyta, within which the coralline algae form the order Corallinales. There are over 1600 described species of nongeniculate coralline algae.[7]

The corallines are presently grouped into two families on the basis of their reproductive structures.[8]

Distribution

Coralline algae are widespread in all of the world's oceans, where they often cover close to 100% of rocky substrata. Only one species, Pneophyllum cetinaensis, is found in freshwater. Its ancestor lived in brackish water, and was already adapted to osmotic stress and rapid changes in water salinity and temperature.[6][9] Many are epiphytic (grow on other algae or marine angiosperms), or epizoic (grow on animals), and some are even parasitic on other corallines.

Forms

Corallines have been divided into two groups, although this division does not constitute a taxonomic grouping:

  • the geniculate (articulated) corallines;
  • the nongeniculate (nonarticulated) corallines.

Geniculate corallines are branching, tree-like organisms which are attached to the substratum by crustose or calcified, root-like holdfasts. The organisms are made flexible by having noncalcified sections (genicula) separating longer calcified sections (intergenicula). Nongeniculate corallines range from a few micrometres to several centimetres thick crusts. They are often very slow growing, and may occur on rock, coral skeletons, shells, other algae or seagrasses. Crusts may be thin and leafy to thick and strongly adherent. Some are parasitic or partly endophytic on other corallines. Many coralline crusts produce knobby protuberances ranging from a millimetre to several centimetres high. Some are free-living as rhodoliths (rounded, free-living specimens). The morphological complexity of rhodoliths enhances species diversity, and can be used as a non-taxonomic descriptor for monitoring.[10]

Thalli can be divided into three layers: the hypothallus, perithallus and epithallus.[11] The epithallus is periodically shed, either in sheets or piecemeal.[12]

Habitat

Corallines live in varying depths of water, ranging from periodically exposed intertidal settings to 270 m water depth (around the maximum penetration of light).[13] Some species can tolerate brackish[13] or hypersaline[14] waters, and only one strictly freshwater coralline species exists.[6] (Some species of the morphologically similar, but non-calcifying, Hildenbrandia, however, can survive in freshwater.) A wide range of turbidities and nutrient concentrations can be tolerated.[13]

Growth

Corallines, especially encrusting forms, are slow growers, and expand by 0.1–80 mm annually.[13] All corallines begin with a crustose stage; some later become frondose.[15]

Avoidance of fouling

Coralline algae about 20 meter deep at the lower limit of kelp forest[16]

As sessile encrusting organisms, the corallines are prone to overgrowth by other "fouling" algae. The group have many defences to such immuration, most of which depend on waves disturbing their thalli. However, the most relied-upon method involves waiting for herbivores to devour the potential encrusters.[17] This places them in the unusual position of requiring herbivory, rather than benefiting from its avoidance.[18] Many species periodically slough their surface epithallus – and anything attached to it.[17]

Some corallines slough off a surface layer of epithallial cells, which in a few cases may be an antifouling mechanism which serves the same function as enhancing herbivore recruitment. This also affects the community, as many algae recruit on the surface of a sloughing coralline, and are then lost with the surface layer of cells. This can also generate patchiness within the community. The common Indo-Pacific corallines, Neogoniolithon fosliei and Sporolithon ptychoides, slough epithallial cells in continuous sheets which often lie on the surface of the plants.

Not all sloughing serves an antifouling function. Epithallial shedding in most corallines is probably simply a means of getting rid of damaged cells whose metabolic function has become impaired. Morton and his students studied sloughing in the South African intertidal coralline alga, Spongites yendoi, a species which sloughs up to 50% of its thickness twice a year. This deep-layer sloughing, which is energetically costly, does not affect seaweed recruitment when herbivores are removed. The surface of these plants is usually kept clean by herbivores, particularly the pear limpet, Patella cochlear. Sloughing in this case is probably a means of eliminating old reproductive structures and grazer-damaged surface cells, and reducing the likelihood of surface penetration by burrowing organisms.

Evolutionary history

The corallines have an excellent fossil record from the Early Cretaceous onwards, consistent with molecular clocks that show the divergence of the modern taxa beginning in this period.[1] The fossil record of nonarticulated forms is better: the unmineralized genuiculae of articulated forms break down quickly, scattering the mineralized portions, which then decay more quickly.[1] This said, non-mineralizing coralline algae are known from the Silurian of Gotland[19] showing that the lineage has a much longer history than molecular clocks would indicate.

The earliest known coralline deposits date from the Ordovician,[2][3] although modern forms radiated in the Cretaceous.[20] True corallines are found in rocks of Jurassic age onwards.[21] Stem group corallines are reported from the Ediacaran Doushantuo formation;[20] later stem-group forms include Arenigiphyllum, Petrophyton, Graticula, and Archaeolithophyllum. The corallines were thought to have evolved from within the Solenoporaceae,[22] a view that has been disputed.[3] Their fossil record matches their molecular history, and is complete and continuous.[1]

The Sporolithaceae tend to be more diverse in periods of high ocean temperatures; the opposite is true for the Corallinaceae.[13] The group's diversity has closely tracked the efficiency of grazing herbivores; for instance, the Eocene appearance of parrotfish marked a spike in coralline diversity, and the extinction of many delicately branched (and thus predation-prone) forms.[17]

Taxonomy

The group's internal taxonomy is in a state of flux; molecular studies are proving more reliable than morphological methods in approximating relationships within the group.[23] Recent advances in morphological classification based on skeletal ultrastructure, however, are promising. Crystal morphology within the calcified cell wall of coralline algae was found to have a high correspondence with molecular studies. These skeletal structures thus provide morphologic evidence for molecular relationships within the group.[24]

According to AlgaeBase:

According to the World Register of Marine Species:

According to ITIS:

Ecology

Fresh surfaces are generally colonized by thin crusts, which are replaced by thicker or branched forms during succession over the course of one (in the tropics) to ten (in the Arctic) years.[17] However, the transition from crusts to branched form depends on environmental conditions. Crusts may also become detached and form calcareous nodules known as Rhodoliths.[27] Their growth may be also disrupted by local environmental factors.[28] While coralline algae are present in most hard substrate marine communities in photic depths, they are more common in higher latitudes and in the Mediterranean.[29] Their ability to calcify in low light conditions makes them the some of deepest photosynthetic multicellular organisms in the ocean,[30] having been found as deep as 268 meters,[31] and as such a critical base of mesophotic ecological systems.[32][33]

Mineralogy

Since coralline algae contain calcium carbonate, they fossilize fairly well. They are particularly significant as stratigraphic markers in petroleum geology. Coralline rock was used as building stone since the ancient Greek culture.[34]

The calcite crystals composing the cell wall are elongated perpendicular to the cell wall. The calcite normally contains magnesium (Mg), with the magnesium content varying as a function of species and water temperature.[35] If the proportion of magnesium is high, the deposited mineral is more soluble in ocean water, particularly in colder waters, making some coralline algae deposits more vulnerable to ocean acidification.[36]

History

The first coralline alga recognized as a living organism was probably Corallina in the 1st century AD.[37] In 1837, Rodolfo Amando Philippi recognized coralline algae were not animals, and he proposed the two generic names Lithophyllum and Lithothamnion as Lithothamnium.[37] For many years, they were included in the order Cryptonemiales as the family Corallinaceae until, in 1986, they were raised to the order Corallinales.

Corallines in community ecology

Branched coralline algae washed ashore on the beach of the county park refuge at Moss Beach, California

Many corallines produce chemicals which promote the settlement of the larvae of certain herbivorous invertebrates, particularly abalone. Larval settlement is adaptive for the corallines because the herbivores remove epiphytes which might otherwise smother the crusts and preempt available light. Settlement is also important for abalone aquaculture; corallines appear to enhance larval metamorphosis and the survival of larvae through the critical settlement period. It also has significance at the community level; the presence of herbivores associated with corallines can generate patchiness in the survival of young stages of dominant seaweeds. This has been seen this in eastern Canada, and it is suspected the same phenomenon occurs on Indo-Pacific coral reefs, yet nothing is known about the herbivore enhancement role of Indo-Pacific corallines, or whether this phenomenon is important in coral reef communities.[citation needed]

Some coralline algae develop into thick crusts which provide microhabitat for many invertebrates. For example, off eastern Canada, Morton found juvenile sea urchins, chitons, and limpets suffer nearly 100% mortality due to fish predation unless they are protected by knobby and undercut coralline algae. This is probably an important factor affecting the distribution and grazing effects of herbivores within marine communities. Nothing is known about the microhabitat role of Indo-Pacific corallines. However, the most common species in the region, Hydrolithon onkodes, often forms an intimate relationship with the chiton Cryptoplax larvaeformis. The chiton lives in burrows it makes in H. onkodes plants, and comes out at night to graze on the surface of the coralline. This combination of grazing and burrowing results in a peculiar growth form (called "castles") in H. onkodes, in which the coralline produces nearly vertical, irregularly curved lamellae. Coralline algae are part of the diet of shingle urchins (Colobocentrotus atratus).

Nongeniculate corallines are of particular significance in the ecology of coral reefs, where they add calcareous material to the structure of the reef, help cement the reef together, and are important sources of primary production. Coralline algae are especially important in reef construction, as they lay down calcium carbonate as calcite. Although they contribute considerable bulk to the calcium carbonate structure of coral reefs, their more important role in most areas of the reef, is in acting as the cement which binds the reef materials into a sturdy structure.[38]

Corallines are particularly important in constructing the algal ridge's reef framework for surf-pounded reefs in both the Atlantic and Indo-Pacific regions. Algal ridges are carbonate frameworks constructed mainly by nongeniculate coralline algae (after Adey, 1978). They require high and persistent wave action to form, so develop best on windward reefs with little or no seasonal change in wind direction. Algal ridges are one of the main reef structures that prevent oceanic waves from striking adjacent coastlines, helping to prevent coastal erosion.[citation needed]

Economic importance

Because of their calcified structure, coralline algae have a number of economic uses.

Some harvesting of maërl beds that span several thousand kilometres off the coast of Brazil takes place. These beds contain as-yet undetermined species belonging to the genera Lithothamnion and Lithophyllum.

Soil conditioning

The collection of unattached corallines (maërl) for use as soil conditioners dates to the 18th century. This is particularly significant in Britain and France, where more than 300,000 tonnes of Phymatolithon calcareum (Pallas, Adey & McKinnin) and Lithothamnion corallioides are dredged annually.

Medicine and food

The earliest use of corallines in medicine involved the preparation of a vermifuge from ground geniculate corallines of the genera Corallina and Jania. This use stopped towards the end of the 18th century. Medical science now uses corallines in the preparation of dental bone implants. The cell fusions provide the matrix for the regeneration of bone tissue.

Maërl is also used as a food additive for cattle and pigs, as well as in the filtration of acidic drinking water.

Aquaria

As a colorful component of live rock sold in the marine aquarium trade, and an important part of reef health, coralline algae are desired in home aquariums for their aesthetic qualities, and ostensible benefit to the tank ecosystem.[citation needed]

See also

References

  1. ^ a b c d Aguirre, J.; Perfectti, F.; Braga, J.C. (2010). "Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta)". Paleobiology. 36 (4): 519. Bibcode:2010Pbio...36..519A. doi:10.1666/09041.1. S2CID 85227395.
  2. ^ a b Riding, R.; Cope, J.C.W.; Taylor, P.D. (1998). "A coralline-like red alga from the Lower Ordovician of Wales" (PDF). Palaeontology. 41: 1069–1076. Archived from the original (PDF) on 9 March 2012.
  3. ^ a b c Brooke, C.; Riding, R. (1998). "Ordovician and Silurian coralline red algae". Lethaia. 31 (3): 185. doi:10.1111/j.1502-3931.1998.tb00506.x.
  4. ^ Silva, P.; Johansen, H. W. (1986). "A reappraisal of the order Corallinales (Rhodophyceae)". European Journal of Phycology. 21 (3): 245–254. doi:10.1080/00071618600650281.
  5. ^ Ballesteros E., 2006 Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology - an Annual Review 44: 123–130
  6. ^ a b c Žuljević, A.; et al. (2016). "First freshwater coralline alga and the role of local features in a major biome transition". Sci. Rep. Nature. 6: 19642. Bibcode:2016NatSR...619642Z. doi:10.1038/srep19642. PMC 4726424. PMID 26791421.
  7. ^ Woelkerling, Wm.J. (1988). The coralline red algae: An analysis of the genera and subfamilies of non-geniculate Corallinaceae. Natural History. London, UK: British Museum. ISBN 978-0-19-854249-0.
  8. ^ Taylor, Thomas N; Taylor, Edith L; Krings, Michael (2009). Paleobotany: the biology and evolution of fossil plants. Academic Press. ISBN 978-0-12-373972-8.
  9. ^ Žuljević, A.; Kaleb, S.; Peña, V.; Despalatović, M.; Cvitković, I.; De Clerck, O.; Le Gall, L.; Falace, A.; Vita, F.; Braga, Juan C.; Antolić, B. (2016). "Pneophyllum cetinaensis". Nature. 6: 19642. Bibcode:2016NatSR...619642Z. doi:10.1038/srep19642. PMC 4726424. PMID 26791421. srep 19642.
  10. ^ Basso D, et al. (2015). "Monitoring deep Mediterranean rhodolith beds" (PDF). Aquatic Conservation: Marine and Freshwater Ecosystems. 26 (3): 3. doi:10.1002/aqc.2586. Archived from the original (PDF) on 2022-11-14. Retrieved 2019-12-15.
  11. ^ Blackwell, W.H.; Marak, J.H.; Powell, M.J. (1982). "The identity and reproductive structures of a misplaced Solenopora (Rhodophycophyta) from the Ordovician of southwestern Ohio and eastern Indiana". Journal of Phycology. 18 (4): 477. doi:10.1111/j.0022-3646.1982.00477.x.
  12. ^ Keats, D.W.; Knight, M.A.; Pueschel, C.M. (1997). "Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef". Journal of Experimental Marine Biology and Ecology. 213 (2): 281. doi:10.1016/S0022-0981(96)02771-2.
  13. ^ a b c d e Aguirre, J.; Riding, R.; Braga, J.C. (2000). "Diversity of coralline red algae: Origination and extinction patterns from the early Cretaceous to the Pleistocene". Paleobiology. 26 (4): 651–667. doi:10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2. ISSN 0094-8373. S2CID 130399147.
  14. ^ Thornton, Scott E.; Orrin, H. Pil (1978). "A lagoonal crustose coralline algal micro-ridge: Bahiret el Bibane, Tunisia". SEPM Journal of Sedimentary Research. 48. doi:10.1306/212F7554-2B24-11D7-8648000102C1865D.
  15. ^ Cabioch, J. (1988). "Morphogenesis and generic concepts in coralline algae: A reappraisal". Helgoländer Meeresuntersuchungen. 42 (3–4): 493–509. Bibcode:1988HM.....42..493C. doi:10.1007/BF02365623.
  16. ^ Küpper, F.C. and Kamenos, N.A. (2018) "The future of marine biodiversity and marine ecosystem functioning in UK coastal and territorial waters (including UK Overseas Territories)–with an emphasis on marine macrophyte communities". Botanica Marina, 61(6): 521-535. doi:10.1515/bot-2018-0076.
  17. ^ a b c d Steneck, R.S. (1986). "The ecology of coralline algal crusts: Convergent patterns and adaptative strategies". Annual Review of Ecology and Systematics. 17: 273–303. doi:10.1146/annurev.es.17.110186.001421. JSTOR 2096997.
  18. ^ Stenec, R.S. (1983). "Escalating herbivory and resulting adaptive trends in calcareous algal crusts". Paleobiology. 9k (1): 44–61. Bibcode:1983Pbio....9...44S. doi:10.1017/S0094837300007375. JSTOR 2400629. S2CID 85645519.
  19. ^ Smith, M.R. and Butterfield, N.J. 2013: A new view on Nematothallus: coralline red algae from the Silurian of Gotland. Palaeontology 56, 345–359. 10.1111/j.1475-4983.2012.01203.x
  20. ^ a b Xiao, S.; Knoll, A. H.; Yuan, X.; Pueschel, C. M. (2004). "Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae". American Journal of Botany. 91 (2): 214–227. doi:10.3732/ajb.91.2.214. PMID 21653378.
  21. ^ Basson, P. W.; Edgell, H. S. (1971). "Calcareous algae from the Jurassic and Cretaceous of Lebanon". Micropaleontology. 17 (4): 411–433. Bibcode:1971MiPal..17..411B. doi:10.2307/1484871. JSTOR 1484871.
  22. ^ Johnson, J. H. (May 1956). "Ancestry of the Coralline algae". Journal of Paleontology. 30 (3): 563–567. ISSN 0022-3360. JSTOR 1300291.
  23. ^ Bittner, L.; Payri, C. E.; Maneveldt, G. W.; Couloux, A.; Cruaud, C.; De Reviers, B.; Le Gall, L. (2011). "Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes" (PDF). Molecular Phylogenetics and Evolution. 61 (3): 697–713. doi:10.1016/j.ympev.2011.07.019. hdl:10566/904. PMID 21851858.
  24. ^ Auer, Gerald; Piller, Werner E. (14 February 2020). "Nanocrystals as phenotypic expression of genotypes—An example in coralline red algae". Science Advances. 6 (7): eaay2126. Bibcode:2020SciA....6.2126A. doi:10.1126/sciadv.aay2126. PMC 7015681. PMID 32095524.
  25. ^ a b c d e f g h "Taxonomy Browser :: Algaebase". www.algaebase.org.
  26. ^ Athanasiadis, Athanasios (January 2, 2019). "Amphithallia, a genus with four-celled carpogonial branches and connecting filaments in the Corallinales (Rhodophyta)". Marine Biology Research. 15 (1): 13–25. Bibcode:2019MBioR..15...13A. doi:10.1080/17451000.2019.1598559. S2CID 155866871 – via Taylor and Francis+NEJM.
  27. ^ Riosmena-Rodríguez, Rafael; Wendy, Nelson; Julio, Aguirre (2016). Rhodolith/Maërl Beds : a global perspective. Switzerland. ISBN 978-3-319-29313-4.{{cite book}}: CS1 maint: location missing publisher (link)
  28. ^ Dulin, Tuvia; Avnaim-Katav, Simona; Sisma-Ventura, Guy; Bialik, Or M.; Angel, Dror L. (January 2020). "Rhodolith beds along the southeastern Mediterranean inner shelf: Implications for past depositional environments". Journal of Marine Systems. 201: 103241. Bibcode:2020JMS...20103241D. doi:10.1016/j.jmarsys.2019.103241. S2CID 210297206.
  29. ^ Basso, Daniela (March 2012). "Carbonate production by calcareous red algae and global change". Geodiversitas. 34 (1): 13–33. doi:10.5252/g2012n1a2. S2CID 86112464.
  30. ^ Littler, Mark M.; Littler, Diane S.; Blair, Stephen M.; Norris, James N. (4 January 1985). "Deepest Known Plant Life Discovered on an Uncharted Seamount". Science. 227 (4682): 57–59. Bibcode:1985Sci...227...57L. doi:10.1126/science.227.4682.57. PMID 17810025. S2CID 20905891.
  31. ^ Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity
  32. ^ Bialik, Or M.; Varzi, Andrea Giulia; Durán, Ruth; Le Bas, Timothy; Gauci, Adam; Savini, Alessandra; Micallef, Aaron (25 February 2022). "Mesophotic Depth Biogenic Accumulations ("Biogenic Mounds") Offshore the Maltese Islands, Central Mediterranean Sea". Frontiers in Marine Science. 9: 803687. doi:10.3389/fmars.2022.803687. hdl:10281/371221.
  33. ^ Btracchi, Valentina; Savini, Alessandra; Marchese, Fabio; Palamara, Serena; Basso, Daniela; Corselli, Cesare (February 2015). "Coralligenous habitat in the Mediterranean Sea: a geomorphological description from remote". Italian Journal of Geosciences. 134 (1): 32–40. doi:10.3301/IJG.2014.16.
  34. ^ Coletti; et al. (2017). "Economic Importance of Coralline Carbonates". In Riosmena-Rodríguez; et al. (eds.). Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library. Vol. 15. pp. 87–101. doi:10.1007/978-3-319-29315-8_4. ISBN 978-3-319-29313-4.
  35. ^ Baas-Becking, L. G.; Galliher, E. W. (1931). "Wall structure and mineralization in coralline algae". Journal of Physical Chemistry. 35 (2): 467–479. doi:10.1021/j150320a006.
  36. ^ Basso D, Granier B (2012). "Carbonate production by calcareous red algae and global change". Geodiversitas. Calcareous algae and global change: from identification to quantification. 34: 13–33. doi:10.5252/g2012n1a2. S2CID 86112464.
  37. ^ a b Irvine, Linda M.; Chamberlain, Yvonne M. (1994). Corallinales, Hildenbrandiales. London, UK: Her Majesty's Stationery Office. ISBN 978-0-11-310016-3.
  38. ^ Caragnano et al., 2009. 3-D distribution of nongeniculate corallinales: A case study from a reef crest of South Sinai (Red Sea, Egypt). Coral Reefs 28: 881-891

Further reading

  • Morton, O.; Chamberlain, Y.M. (1985). "Records of some epiphytic coralline algae in the north-east of Ireland". Ireland Naturalists' Journal. 21: 436–440.
  • Morton, O.; Chamberlain, Y.M. (1989). "Further records of encrusting coralline algae on the north-east coast of Ireland". Irish Naturalists' Journal. 23: 102–106.
  • Suneson, S (1943). "The structure, life-history, and taxonomy of the Swedish Corallinaceae". Acta Universitatis Lundensis. N.F. Avd. 2. 39 (9): 1–66.
  • Woelkerling, W. J. (1993). "Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH)". Gunneria. 67: 1–289.
  • "ITIS Report for Corallinaceae".

Read other articles:

Screen Actors Guild Awards ke-21DeskripsiPenampilan film dan televisi waktu perdana terbaikTanggal25 Januari 2015 (2015-01-25)LokasiShrine AuditoriumLos Angeles, CaliforniaNegaraAmerika SerikatDipersembahkan olehSAG-AFTRADiberikan perdana1995Situs webwww.sagawards.orgSiaran televisi/radioSaluranTNT dan TBS← ke-20 Screen Actors Guild Awardke-22 → Screen Actors Guild Award Tahunan ke-21, yang menghargai pengabdian terbaik dalam penampilan film dan televisi untuk tahun 2014, dipers…

Nous les amoureuxBerkas:Jean-Claude Pascal - Nous les amoureux.jpgPerwakilan Kontes Lagu Eurovision 1961NegaraLuxembourgArtisChevalier de VillemontSebagaiJean-Claude PascalBahasaPrancisKomposerJacques DatinPenulis lirikMaurice VidalinKonduktorLéo ChauliacHasil FinalHasil final1Poin di final31Kronologi partisipasi◄ So laang we's du do bast (1960)   Petit bonhomme (1962) ► Nous les amoureux adalah lagu pemenang Kontes Lagu Eurovision 1961. Lagu tersebut dipentaskan dalam bahasa Pran…

政治腐敗 概念 反腐敗 賄賂 裙帶關係 腐败经济学(英语:Economics of corruption) 选举操控 精英俘获(英语:Elite capture) 权力寻租 竊盜統治 黑手黨國家 裙帶關係 行贿基金 買賣聖職 各国腐败 亚洲 中国 治貪史 中華人民共和國 朝鲜 菲律宾 欧洲 俄羅斯(英语:Corruption in Russia) 乌克兰 英国 法国 查论编   此条目的内容是1949年中華人民共和國成立以后中国大陆的国家工…

Lagoon in Rio Grande do Sul, Brazil Lagoa dos PatosLagoa dos Patos from satelliteLagoa dos PatosLocationBrazilCoordinates31°06′S 51°15′W / 31.100°S 51.250°W / -31.100; -51.250TypelagoonPrimary inflowsJacuí-Guaíba and Camaquã RiverPrimary outflowsSão Gonçalo ChannelCatchment area201,626 km2 (77,848 sq mi)[1]Max. length180 miles (290 km)Max. width44 miles (71 km)Surface area10,100 km2 (3,900 sq mi)[2] to 1…

الألعاب العالمية للشرطة والإطفائيين     معلومات عامة الموقع الرسمي الموقع الرسمي  التسلسل الزمني للمنافسة تعديل مصدري - تعديل   الألعاب العالمية للشرطة والإطفائيين (بالإنجليزية World Police and Fire Games, WPFG) هي مسابقة متعددة الرياضات والمشاركة فيها مفتوحة للعاملين أو المتق…

Quartz fuméCatégorie IX : silicates[1] Quartz Fumé- Massif du Mont Blanc - Haute Savoie, France (15x10 cm) Général Classe de Strunz 4.DA.05 4 OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)  4.D Metal:Oxygen = 1:2 and similar   4.DA With small cations    4.DA.05 Quartz SiO2Space Group P 3121,P 3221Point Group 3 2 Formule chimique O2Si SiO2Identification Masse formulaire[2] 60,0843…

豪栄道 豪太郎 場所入りする豪栄道基礎情報四股名 澤井 豪太郎→豪栄道 豪太郎本名 澤井 豪太郎愛称 ゴウタロウ、豪ちゃん、GAD[1][2]生年月日 (1986-04-06) 1986年4月6日(38歳)出身 大阪府寝屋川市身長 183cm体重 160kgBMI 47.26所属部屋 境川部屋得意技 右四つ・出し投げ・切り返し・外掛け・首投げ・右下手投げ成績現在の番付 引退最高位 東大関生涯戦歴 696勝493敗66…

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助讀…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

У этого термина существуют и другие значения, см. Украина (значения). рейхскомиссариатРейхскомиссариат Украинанем. Reichskommissariat Ukraineукр. Райхскомісаріат Україна Флаг Герб ←   → 1941 — 1944 Столица Ровно Крупнейшие города Киев, Днепропетровск, Запорожье, Кривой Рог Язы…

Aneurisma AortaGambar A menunjukkan aorta normal. Gambar B menunjukkan aneurisma aorta torakalis (posisinya di belakang jantung). Gambar C menunjukkan aneurisma aorta abdominalis yang posisinya di bawah arteri yang menyuplai darah ke ginjal.Informasi umumSpesialisasiBedah vaskularTipeAneurisma aorta abdominalis, aneurisma aorta torakalis, aneurisma aorta torakoabdominalisPenyebabAterosklerosis, hipertensi, trauma, infeksi aortaFaktor risikoMerokok, hipertensi, diabetes melitus, riwayat keluarga …

Hatfield CollegeUniversitas DurhamGedung utama, Hatfield CollegeLambang kebesaran Hatfield CollegeSenjata: Tanda Perang biru langit Atau diantara tiga Singa Perak yang merajalela dengan Batasan Cerpelai                                     LokasiNorth Bailey, Durham, DH1 3RQMotobahasa Latin: Vel Primus Vel Cum PrimisMoto dalam bahasa InggrisEither the first or with the first (Entah ya…

Modern art museum in Medzilaborce, Slovakia This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2015) (Learn how and when to remove this message) Andy Warhol Museum of Art View of museum in 2008 with large Campbell's Soup Cans. The Andy Warhol Museum of Modern Art (Slovak: Múzeum Andyho Warhola Medzilaborce or Múzeum Moderného Umenia Andyho Warhola) in Med…

US-based religious and political organization For other groups of similar name, see Fellowship (disambiguation) § Religion. Not to be confused with The Family International. Fellowship FoundationNicknameThe FamilyFormationApril 1935 (89 years ago) (1935-04)FounderAbraham VereideFounded atSeattle, WashingtonTypenonprofitTax ID no. 53-0204604Legal status501(c)(3)[1]Headquarters 2145 N 24th St Arlington, Virginia 22207-4960 United States PresidentKatherine CraneAsso…

Japanese engineer Hideo ShimaBorn(1901-05-20)20 May 1901Osaka, JapanDied18 March 1998(1998-03-18) (aged 96)Tokyo, JapanOccupation(s)Engineer, Chief Engineer of Shinkansen Project Hideo Shima (島 秀雄, Shima Hideo, 20 May 1901 – 18 March 1998) was a Japanese engineer and the driving force behind the building of the first bullet train (Shinkansen).[1][2] Shima was born in Osaka in 1901, and educated at the Tokyo Imperial University, where he studied Mechanical Enginee…

  هذه المقالة عن مفهوم سياسي. لطعام، طالع سلطة (توضيح). السُّلْطة هي قدرة شخص معين أو منظمة على فرض أنماط سلوكية لدى شخص ما. تعتبر السلطة أحد أسس المجتمع البشري وهي مناقضة لمبدأ التعاون. إن تبني أنماط العمل نتيجة فرض السلطة يُسمى الانصياع، والسلطة كمصطلح يشمل غالبية حالات…

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut). …

قرية الحشوى  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية بني قيس الطور العزلة عزلة ربع الشمري السكان التعداد السكاني 2004 السكان 69   • الذكور 39   • الإناث 30   • عدد الأسر 9   • عدد المساكن 9 معلومات أخرى التوقيت توقيت اليمن (+3 غريني…

Potentially lethal game of chance For the similarly-named 1965 cartoon, see Rushing Roulette. For other uses, see Russian Roulette (disambiguation). Russian roulette as depicted in the 1925 movie The Night Club Russian roulette (Russian: Русская рулетка, romanized: Russkaya ruletka) is a potentially lethal game of chance in which a player places a single round in a revolver, spins the cylinder, places the muzzle against the head or body (of the opponent or themselves), and pul…

西宁曹家堡国际机场Xining Caojiabao International AirportIATA:XNNICAO:ZLXN概览机场类型民用營運者青海省民用机场有限责任公司服務城市青海省西宁市離市中心25.5千米地理位置 中国青海省海东市互助土族自治县啟用日期1991年12月27日海拔高度7,165英尺(2,184[1]米)坐標36°31′42″N 102°02′49″E / 36.52833°N 102.04694°E / 36.52833; 102.04694地圖XNN显示青海的地图XNN显示…