Conley conjecture
The Conley conjecture, named after mathematician Charles Conley, is a mathematical conjecture in the field of symplectic geometry, a branch of differential geometry. BackgroundLet be a compact symplectic manifold. A vector field on is called a Hamiltonian vector field if the 1-form is exact (i.e., equals to the differential of a function . A Hamiltonian diffeomorphism is the integration of a 1-parameter family of Hamiltonian vector fields . In dynamical systems one would like to understand the distribution of fixed points or periodic points. A periodic point of a Hamiltonian diffeomorphism (of periodic ) is a point such that . A feature of Hamiltonian dynamics is that Hamiltonian diffeomorphisms tend to have infinitely many periodic points. Conley first made such a conjecture for the case that is a torus. [2] The Conley conjecture is false in many simple cases. For example, a rotation of a round sphere by an angle equal to an irrational multiple of , which is a Hamiltonian diffeomorphism, has only 2 geometrically different periodic points.[1] On the other hand, it is proved for various types of symplectic manifolds. History of studiesThe Conley conjecture was proved by Franks and Handel for surfaces with positive genus. [3] The case of higher dimensional torus was proved by Hingston. [4] Hingston's proof inspired the proof of Ginzburg of the Conley conjecture for symplectically aspherical manifolds. Later Ginzburg--Gurel and Hein proved the Conley conjecture for manifolds whose first Chern class vanishes on spherical classes. Finally, Ginzburg--Gurel proved the Conley conjecture for negatively monotone symplectic manifolds. References
|
Portal di Ensiklopedia Dunia