Cone-beam spiral computed tomography (CT) is a medical imaging technology that has impacted healthcare since its development in the early 1990s.[1][2] This technology offers advancements over traditional fan-beam CT, including faster scanning speed, higher image quality, and the ability to generate true three-dimensional volumes, even with contrast-enhancement. It is estimated that the majority of the approximately 300 million CT scans performed annually worldwide use spiral cone-beam technology.
History
The concept of cone-beam spiral CT was first proposed by Ge Wang in 1991,[3] who also introduced algorithms for approximate image reconstruction. A number of researchers and companies have contributed to the development of this technology.[4]
In 2002, Alexander Katsevich formulated the first theoretically exact cone-beam spiral CT algorithm.[5][6] The work on cone-beam spiral CT has become a foundational aspect of modern medical imaging, allowing for accurate volumetric image reconstruction from truncated x-ray cone-beam projections.[7]
Principles
Cone-beam spiral CT uses an X-ray source and multiple detector rows that rotate spirally around the patient. The cone-shaped X-ray beam captures a large volume of data in a single pass, enabling the reconstruction of high-resolution volumetric and dynamic images. Key steps in the cone-beam spiral CT scanning process include:
Cone-Beam Projection: Unlike fan-beam CT, which uses a single detector row, cone-beam CT employs multiple detector rows, sometimes numbering in the hundreds, to capture a wider field of view.
Spiral Scanning: The CT system performs both the rotation of the X-ray data acquisition system and the translation of the patient on a motorized table simultaneously. This creates a spiral or helical trajectory, resulting in continuous data acquisition within a short scan time.
Image Reconstruction: Advanced algorithms such as Wang's generalized Feldkamp-Davis-Kress (FDK) algorithms and Katsevich-type formulas are used to reconstruct images from cone-beam projection data.[8]
Applications
Cone-beam spiral CT is employed in various medical imaging tasks, including:
Lung Cancer Screening: It plays a crucial role in early detection and monitoring of lung cancer.[9]
Oncology: Cone-beam CT is used to characterize tumors, plan radiation therapy, and assess treatment responses.[10]
Cardiology: It is useful for evaluating coronary artery disease, planning interventions, and monitoring disease progression.[11]
Orthopedics: The technology is effective in imaging complex bone structures and assisting in surgical planning.[12]
Trauma Imaging: Cone-beam CT provides rapid assessment of traumatic injuries, particularly in emergency settings.[13]
Interventional Radiology: It guides various minimally invasive procedures with high precision.[14]
References
^Defrise, M., Noo, F., Kudo, H. "Physics in Medicine and Biology," 45(3):623-643, 2000.
^La Riviere, P.J., Crawford, C.R. "Journal of Medical Imaging," 8(5): 052111-1-12, 2021.
^Lv Y, Katsevich A, Zhao J, Yu H, Wang G: Fast exact/quasi-exact FBP algorithms for triple-source helical cone-beam CT. IEEE Trans. Medical Imaging 29:756-770, 2010
^Hu, H., Duerinckx, A. J., Foley, W. D., & Cooper, C. (2000). Helical/spiral CT in cardiovascular disease. Journal of Thoracic Imaging, 15(4), 290-305. doi:10.1097/00005382-200010000-00004
^Wang, X., Wu, Z., & Liu, Y. (2019). The clinical application of cone-beam computed tomography in emergency trauma. Journal of Clinical Medicine Research, 11(7), 484-491. doi:10.14740/jocmr3844