Concept-based image indexing

Concept-based image indexing, also variably named as "description-based" or "text-based" image indexing/retrieval, refers to retrieval from text-based indexing of images that may employ keywords, subject headings, captions, or natural language text (Chen & Rasmussen, 1999). It is opposed to Content-based image retrieval. Indexing is a technique used in CBIR.

Chu (2001) confirms that there exist two distinctive research groups employing the content-based and description-based approaches, respectively. However, research in the content-based domain is currently dominating in the field, while the other approach has less visibility.

See also

References

  • Ahmad, K., M. Tariq, B. Vrusias and C.Handy. 2003. Corpus-based thesaurus construction for image retrieval in specialist domains. In Sebastiani, F. (ed.). Proceedings of the 25th European Conference on Information Retrieval Research (ECIR-03). 502–510. Heidelberg: Springer Verlag.
  • Angeles, M. (1998). Information Organization and Information Use of Visual Resources Collections. VRA Bulletin, 25 (3), 51-58. [1]
  • Chen, H.-L., & Rasmussen, E.M. (1999). Intellectual access to images. Library Trends, 48(2), 291–302.
  • Chu, H. T. (2001). Research in image indexing and retrieval as reflected in the literature. Journal of the American Society for Information Science and Technology, 52(12), 1011-1018.
  • Fidel, R.; Hahn, T. B.; Rasmussen, E. M. & Smith, P. J. (1994). Challenges in Indexing Electronic Text and Images. Medford, NJ: Learned Information. (ASIS Monograph Series)
  • Heidorn, P. B. & Sandore, B. (Eds.). (1997). Digital Image Access & Retrieval: Proceedings of the 1996 Clinic on Library Applications of Data Processing. Illinois: University of Illinois, Graduate School of Library and Information Science.
  • Jörgensen, C. (2003). Image Retrieval. Theory and Research. Lanham, Maryland: Scarecrow Press.
  • Landbeck, C. R. (2002). The organization and categorization of political cartoons: An exploratory study. The Florida State University, School of Information Studies. (Master of Science thesis). https://web.archive.org/web/20120331122537/http://etd.lib.fsu.edu/theses/available/etd-06272003-144515/unrestricted/crl01.pdf
  • Lamy-Rousseau, F. (1984). Classification des images, materiels et donnees = Classification of images, materials and data . 2nd ed. Longueuil, Quebec: F. Lamy-Rousseau.
  • Panofsky, E. (1962). Studies in Icology: Humanistic themes in the art of the Renaissance. New York: Harper & Row.
  • Rasmussen, E. M. (1997). Indexing images. Annual Review of Information Science and Technology, 32, 169-196.
  • Shatford, S. (1986). Analyzing the Subject of a Picture: A Theoretical Approach. Cataloging and Classification Quarterly, 6(3), 39-62.
  • Wang, J. Z. (2001). Integrated Region-Based Image Retrieval. Boston, MA: Kluwer Academic Publishers. Book review: http://www-db.stanford.edu/~wangz/project/kluwer/1/review.pdf
  • Wang, Xin; Erdelez, Sanda; Allen, Carla; Anderson, Blake; Cao, Hongfei & Shyu, Chi-Ren (2011). Role of Domain Knowledge in Developing User-Centered Medical-Image Indexing. Journal of the American Society for Information Science and Technology, early view October 2011. doi:10.1002/asi.21686
  • Warden, G.; Dunbar, D.; Wanczycki, C. & O'Hanley, S. (2002). The Subject Analysis of Images: Past, Present and Future. https://web.archive.org/web/20080726185732/http://www.slais.ubc.ca/PEOPLE/students/student-projects/C_Wanczycki/libr517/homepage.html
  • Ørnager, S. (1997). Image retrieval - Theoretical analysis and empirical user studies on accessing information in images. Proceedings of the ASIS annual meeting, 34, 202-211.

 

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9