the occurrence of inherent disorder in the ideal structure.
Overview
Complex metallic alloys is an umbrella term for intermetallic compounds with a relatively large unit cell. There is no precise definition of how large the unit cell of a complex metallic alloy has to be, but the broadest definition includes Zintl phases, skutterudites, and Heusler compounds on the most simple end, and quasicrystals on the more complex end.[2]
Research
Following the invention of X-ray crystallography techniques in the 1910s, the atomic structure of many compounds was investigated. Most metals have relatively simple structures. However, in 1923 Linus Pauling reported on the structure of the intermetallic NaCd2, which had such a complicated structure he was unable to fully explain it.[3] Thirty years later, he concluded that NaCd2 contains 384 sodium and 768 cadmium atoms in each unit cell.[4]
Most physical properties of CMAs show distinct differences with respect to the behavior of normal metallic alloys and therefore these materials possess a high potential for technological application.
The European Commission funded the Network of Excellence CMA[5] from 2005 to 2010, uniting 19 core groups in 12 countries. From this emerged the European Integrated Center for the Development of New Metallic Alloys and Compounds (previously C-MAC, now ECMetAC), which connects researchers at 21 universities.[6]
^Pauling, Linus (1923). "The Crystal Structure of Magnesium Stannide". Journal of the American Chemical Society. 45 (12). American Chemical Society (ACS): 2777–2780. doi:10.1021/ja01665a001. ISSN0002-7863.
^Pauling, Linus (1955). "The Stochastic Method and the Structure of Proteins". American Scientist. 43 (2): 285–297. JSTOR27826614.
^Samson, S. (1965-09-01). "The crsytal structure of the phase β Mg2Al3". Acta Crystallographica. 19 (3). International Union of Crystallography (IUCr): 401–413. doi:10.1107/s0365110x65005133. ISSN0365-110X.
^Boudard, M.; Klein, H.; Boissieu, M. De; Audier, M.; Vincent, H. (1996). "Structure of quasicrystalline approximant phase in the Al-Pd-Mn system". Philosophical Magazine A. 74 (4). Informa UK Limited: 939–956. Bibcode:1996PMagA..74..939B. doi:10.1080/01418619608242169. ISSN0141-8610.
^Smontara, A.; Smiljanić, I.; Bilušić, A.; Jagličić, Z.; Klanjšek, M.; Roitsch, S.; Dolinšek, J.; Feuerbacher, M. (2007). "Electrical, magnetic, thermal and thermoelectric properties of the "Bergman phase" Mg32(Al,Zn)49 complex metallic alloy". Journal of Alloys and Compounds. 430 (1–2). Elsevier BV: 29–38. doi:10.1016/j.jallcom.2006.05.026. ISSN0925-8388.