Representation of the BRI1-BAK1 co-receptor complex
Brassinosteroid insensitive 1 (BRI1) is the major receptor of the plant hormonebrassinosteroid.[1][2] It plays very important roles in plant development, especially in the control of cell elongation and for the tolerance of environmental stresses. BRI1 enhances cell elongation,[1] promotes pollen development,[3] controls vasculature development[2] and promotes chilling and freezing tolerance.[4] BRI1 is one of the most well studied hormone receptors and it acts a model for the study of membrane-bound receptors in plants.
In the absence of brassinosteroid, BRI1 is held in an inactive state by another protein, BRI1 kinase inhibitor 1 (BKI1).[6] When brassinosteroid binds to BRI1, it reduces the stability of the BRI1:BKI1 complex and promotes the binding of BRI1 to another membrane protein, BRI1-associated receptor kinase 1 (BAK1).[7] In the BRI1:BAK1 complex, both BRI1 and BAK1 make contact with the brassinosteroid molecule and for this reason they are considered a co-receptor.[5][7] BRI1 and BAK1 sequentially phosphorylate each other in their kinase domains, which results in the activation of BRI1. The activated kinase domain of BRI1 phosphorylates several receptor-like cytoplasmic kinases (RLCKs), notably the brassinosteroid signalling kinase (BSK) and constituitive differential growth 1 (CDG1) families. The RLCKs transduce this signal to downstream components, which ultimately results in the activation or de-activation of several transcription factors.[5]
Related proteins
BRI1-family proteins
In the model plant species Arabidopsis thaliana, BRI1 acts alongside two homologous proteins, known as BRI1-LIKE1 (BRL1) and BRL3.[2] The function of BRL1 and BRL3 appears to be restricted to the development of the vasculature system, but even in this context, BRI1 plays a more dominant role.[2] Both BRL1 and BRL3 are able to bind brassinosteroids and act as receptors.[2][5] A fourth BRI1-family protein, BRL2 cannot bind brassinosteroid and its function is unknown.[5]
FLS2
BRI1 belongs to the large leucine-rich receptor-like protein kinase family. There are many other members of this family of proteins,[8] and one of the most important is FLS2.[9] FLS2 acts as a detector of the bacterial protein flagellin and is important for plant immunity.[9] Surprisingly (given their different functions) the signal cascades of BRI1 and FLS2 share many of the same components.[10] Recently it was suggested that BRI1 and FLS2 localize to different 'nano-domains' on the cell membrane and it is this spatial separation that accounts for their very different signal outputs.[11]