Birch's theoremIn mathematics, Birch's theorem,[1] named for Bryan John Birch, is a statement about the representability of zero by odd degree forms. Statement of Birch's theoremLet K be an algebraic number field, k, l and n be natural numbers, r1, ..., rk be odd natural numbers, and f1, ..., fk be homogeneous polynomials with coefficients in K of degrees r1, ..., rk respectively in n variables. Then there exists a number ψ(r1, ..., rk, l, K) such that if then there exists an l-dimensional vector subspace V of Kn such that RemarksThe proof of the theorem is by induction over the maximal degree of the forms f1, ..., fk. Essential to the proof is a special case, which can be proved by an application of the Hardy–Littlewood circle method, of the theorem which states that if n is sufficiently large and r is odd, then the equation has a solution in integers x1, ..., xn, not all of which are 0. The restriction to odd r is necessary, since even degree forms, such as positive definite quadratic forms, may take the value 0 only at the origin. References
|
Portal di Ensiklopedia Dunia