Benzotrifuroxan

Benzotrifuroxan
Names
Other names
Benzenetrifuroxan
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
  • InChI=1S/C6N6O6/c13-10-4-1(7-16-10)5-3(8-17-11(5)14)6-2(4)9-18-12(6)15
    Key: ROSQKRBIBODSRH-UHFFFAOYSA-N
  • C12=NO[N+](=C1C3=NO[N+](=C3C4=NO[N+](=C24)[O-])[O-])[O-]
Properties
C6N6O6
Molar mass 252.102 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Benzotrifuroxan is a heterocyclic organic compound that is related to 1,2,5-oxadioles. The high-energy compound is explosive.

History

The compound was first synthesized in 1924 by O. Turek as hexanitrosobenzene.[1][2] In addition to the hexanitroso structure, symmetric polycyclic structures could also be formulated.[3][4]

1. Hexa(1-aza-2-oxaethenyl)benzene, 2. 5,7,9,11,13,15-hexaza-6,8,10,12,14,16-hexoxa-[5.5.6.2(1.4).0(3.7).0(2.9).0(13.17).0.(15.18)]-hexacycloctadec-1,3,17-triene, 3. 2,5,8,11,14,17-hexaza-3,4,9,10,15,16-hexoxa-[12.4.0.0(1.6).0(7.12)]-tricyclooctadex-6,12,18-triene
Historical, non-real structures of benzotrifuroxan

Characteristics

Physical Properties

Benzotrifuroxan is a crystalline solid that melts at 195 °C.[5]  The compound crystallizes in an orthorhombic crystal lattice with the space group Pna21.[4][6]  The molar enthalpy of formation is 606 kJ·mol−1, the enthalpy of combustion is −2967 kJ·mol−1.[7]

Chemical Properties

Benzotrifuroxan can decompose explosively. The heat of explosion is 5903 kJ·kg −1,[8] the detonation speed is 8.61 km·s −1.[9]  The compound is sensitive to impact.[10]

Benzotrifuroxan forms stable complexes with aromatic hydrocarbons such as naphthalene, 1-phenylnaphthalene, 2-phenylnaphthalene and tetrahydronaphthalene. Recrystallization in benzene yields a 1:1 complex with the solvent, whereby the benzene can only be removed at 100 °C in vacuum.[11]

Synthesis

Benzotrifuroxan can be obtained by thermal degradation of 1,3,5-triazido-2,4,6-trinitrobenzene.[1][2]

1,3,5-Triazido-2,4,6-trinitrobenzene decomposition





A further synthesis can be carried out by reacting 5,7-dichloro-4,6-dinitronbenzofuroxan with sodium azide.[12]

Uses

In combination with TNT, the compound can be used to produce nanodiamonds using detonation shock waves.[13]

References

  1. ^ a b O. Turek: Le 2,4,6-trinitro-1,3,5-triazido-benzene, nouvel explosif d’amorcage. In: Chimie et industrie. Band 26, 1931, S. 781–794.
  2. ^ a b O. Turek: 1,3,5-Triazido-2,4,6-trinitrobenzen, nova inicialna vybusina. In: Chemicky obzor. Nr. 7, 1932, S. 76–79; 97–104.
  3. ^ Bacon, Neville; Boulton, A. J.; Katritzky, A. R. (1967). "Structure of "hexanitrosobenzene" from vibrational spectroscopy". Trans. Faraday Soc. 63: 833–835. doi:10.1039/TF9676300833.
  4. ^ a b Cady, H. H.; Larson, A. C.; Cromer, D. T. (1 March 1966). "The crystal structure of benzotrifuroxan (hexanitrosobenzene)". Acta Crystallographica. 20 (3): 336–341. Bibcode:1966AcCry..20..336C. doi:10.1107/S0365110X6600080X.
  5. ^ Boeyens, J. C. A.; Herbstein, F. H. (July 1965). "Molecular Compounds and Complexes. II. Exploratory Crystallographic Study of Some Donor-Acceptor Molecular Compounds 1". The Journal of Physical Chemistry. 69 (7): 2153–2159. doi:10.1021/j100891a003.
  6. ^ Maslen, E. N. (1 September 1968). "A phase refinement of the crystal structure of benzotrifuroxan". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 24 (9): 1170–1172. Bibcode:1968AcCrB..24.1170M. doi:10.1107/S0567740868003912.
  7. ^ Rouse, Prince E. (January 1976). "Enthalpies of formation and calculated detonation properties of some thermally stable explosives". Journal of Chemical & Engineering Data. 21 (1): 16–20. doi:10.1021/je60068a026.
  8. ^ Rice, Betsy M.; Hare, Jennifer (February 2002). "Predicting heats of detonation using quantum mechanical calculations". Thermochimica Acta. 384 (1–2): 377–391. Bibcode:2002TcAc..384..377R. doi:10.1016/S0040-6031(01)00796-1.
  9. ^ Muthurajan, H; Sivabalan, R; Talawar, M.B; Asthana, S.N (August 2004). "Computer simulation for prediction of performance and thermodynamic parameters of high energy materials". Journal of Hazardous Materials. 112 (1–2): 17–33. Bibcode:2004JHzM..112...17M. doi:10.1016/j.jhazmat.2004.04.012. PMID 15225927.
  10. ^ Pepekin, V. I.; Korsunskii, B. L.; Denisaev, A. A. (September 2008). "Initiation of solid explosives by mechanical impact". Combustion, Explosion, and Shock Waves. 44 (5): 586–590. Bibcode:2008CESW...44..586P. doi:10.1007/s10573-008-0089-7.
  11. ^ Bailey, A.S.; Case, J.R. (January 1958). "4:6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: A new series of complex-forming reagents for aromatic hydrocarbons". Tetrahedron. 3 (2): 113–131. doi:10.1016/0040-4020(58)80003-4.
  12. ^ Chugunova, Elena A.; Timasheva, Rezeda E.; Gibadullina, Elmira M.; Burilov, Alexander R.; Goumont, Regis (August 2012). "First Synthesis of Benzotrifuroxan at Low Temperature: Unexpected Behavior of 5,7-Dichloro-4,6-dinitrobenzo-furoxan with Sodium Azide". Propellants, Explosives, Pyrotechnics. 37 (4): 390–392. doi:10.1002/prep.201200080.
  13. ^ Kozyrev, N. V. (November 2008). "Using the tracer method to study detonation processes". Combustion, Explosion, and Shock Waves. 44 (6): 698–703. Bibcode:2008CESW...44..698K. doi:10.1007/s10573-008-0105-y.

attribution translated from the German article de:Benzotrifuroxan

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia