Böttcher's equation , named after Lucjan Böttcher , is the functional equation
F
(
h
(
z
)
)
=
(
F
(
z
)
)
n
{\displaystyle F(h(z))=(F(z))^{n}}
where
h is a given analytic function with a superattracting fixed point of order n at a , (that is,
h
(
z
)
=
a
+
c
(
z
−
a
)
n
+
O
(
(
z
−
a
)
n
+
1
)
,
{\displaystyle h(z)=a+c(z-a)^{n}+O((z-a)^{n+1})~,}
in a neighbourhood of a ), with n ≥ 2
F is a sought function.
The logarithm of this functional equation amounts to Schröder's equation .
Solution
Solution of functional equation is a function in implicit form .
Lucian Emil Böttcher sketched a proof in 1904 on the existence of solution: an analytic function F in a neighborhood of the fixed point a , such that:[ 1]
F
(
a
)
=
0
{\displaystyle F(a)=0}
This solution is sometimes called:
The complete proof was published by Joseph Ritt in 1920,[ 3] who was unaware of the original formulation.[ 4]
Böttcher's coordinate (the logarithm of the Schröder function ) conjugates h(z) in a neighbourhood of the fixed point to the function z n . An especially important case is when h(z) is a polynomial of degree n , and a = ∞ .[ 5]
Explicit
One can explicitly compute Böttcher coordinates for:[ 6]
Examples
For the function h and n=2[ 7]
h
(
x
)
=
x
2
1
−
2
x
2
{\displaystyle h(x)={\frac {x^{2}}{1-2x^{2}}}}
the Böttcher function F is:
F
(
x
)
=
x
1
+
x
2
{\displaystyle F(x)={\frac {x}{1+x^{2}}}}
Applications
Böttcher's equation plays a fundamental role in the part of holomorphic dynamics which studies iteration of polynomials of one complex variable .
Global properties of the Böttcher coordinate were studied by Fatou [ 8]
[ 9] and Douady and Hubbard .[ 10]
See also
References
^ Böttcher, L. E. (1904). "The principal laws of convergence of iterates and their application to analysis (in Russian)". Izv. Kazan. Fiz.-Mat. Obshch . 14 : 155– 234.
^ J. F. Ritt. On the iteration of rational functions . Trans. Amer. Math. Soc. 21 (1920) 348-356. MR 1501149.
^ Ritt, Joseph (1920). "On the iteration of rational functions" . Trans. Amer. Math. Soc . 21 (3): 348– 356. doi :10.1090/S0002-9947-1920-1501149-6 .
^ Stawiska, Małgorzata (November 15, 2013). "Lucjan Emil Böttcher (1872–1937) - The Polish Pioneer of Holomorphic Dynamics". arXiv :1307.7778 [math.HO ].
^ Cowen, C. C. (1982). "Analytic solutions of Böttcher's functional equation in the unit disk". Aequationes Mathematicae . 24 : 187– 194. doi :10.1007/BF02193043 .
^ math.stackexchange question: explicitly-calculating-greens-function-in-complex-dynamics
^ Chaos by Arun V. Holden Princeton University Press, 14 lip 2014 - 334
^ Alexander, Daniel S.; Iavernaro, Felice; Rosa, Alessandro (2012). Early Days in Complex Dynamics: A history of complex dynamics in one variable during 1906–1942 . ISBN 978-0-8218-4464-9 .
^ Fatou, P. (1919). "Sur les équations fonctionnelles, I" . Bulletin de la Société Mathématique de France . 47 : 161– 271. doi :10.24033/bsmf.998 . JFM 47.0921.02 . ; Fatou, P. (1920). "Sur les équations fonctionnelles, II" . Bulletin de la Société Mathématique de France . 48 : 33– 94. doi :10.24033/bsmf.1003 . JFM 47.0921.02 . ; Fatou, P. (1920). "Sur les équations fonctionnelles, III" . Bulletin de la Société Mathématique de France . 48 : 208– 314. doi :10.24033/bsmf.1008 . JFM 47.0921.02 .
^ Douady, A.; Hubbard, J. (1984). "Étude dynamique de polynômes complexes (première partie)" . Publ. Math. Orsay . Archived from the original on 2013-12-24. Retrieved 2012-01-22 . ; Douady, A.; Hubbard, J. (1985). "Étude dynamique des polynômes convexes (deuxième partie)" . Publ. Math. Orsay . Archived from the original on 2013-12-24. Retrieved 2012-01-22 .