In metric geometry , asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension . The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups [ 1] in the context of geometric group theory , as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu , finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture .[ 2] Asymptotic dimension has important applications in geometric analysis and index theory .
Let
X
{\displaystyle X}
be a metric space and
n
≥
0
{\displaystyle n\geq 0}
be an integer. We say that
asdim
(
X
)
≤
n
{\displaystyle \operatorname {asdim} (X)\leq n}
if for every
R
≥
1
{\displaystyle R\geq 1}
there exists a uniformly bounded cover
U
{\displaystyle {\mathcal {U}}}
of
X
{\displaystyle X}
such that every closed
R
{\displaystyle R}
-ball in
X
{\displaystyle X}
intersects at most
n
+
1
{\displaystyle n+1}
subsets from
U
{\displaystyle {\mathcal {U}}}
. Here 'uniformly bounded' means that
sup
U
∈
U
diam
(
U
)
<
∞
{\displaystyle \sup _{U\in {\mathcal {U}}}\operatorname {diam} (U)<\infty }
.
We then define the asymptotic dimension
asdim
(
X
)
{\displaystyle \operatorname {asdim} (X)}
as the smallest integer
n
≥
0
{\displaystyle n\geq 0}
such that
asdim
(
X
)
≤
n
{\displaystyle \operatorname {asdim} (X)\leq n}
, if at least one such
n
{\displaystyle n}
exists, and define
asdim
(
X
)
:=
∞
{\displaystyle \operatorname {asdim} (X):=\infty }
otherwise.
Also, one says that a family
(
X
i
)
i
∈
I
{\displaystyle (X_{i})_{i\in I}}
of metric spaces satisfies
asdim
(
X
)
≤
n
{\displaystyle \operatorname {asdim} (X)\leq n}
uniformly if for every
R
≥
1
{\displaystyle R\geq 1}
and every
i
∈
I
{\displaystyle i\in I}
there exists a cover
U
i
{\displaystyle {\mathcal {U}}_{i}}
of
X
i
{\displaystyle X_{i}}
by sets of diameter at most
D
(
R
)
<
∞
{\displaystyle D(R)<\infty }
(independent of
i
{\displaystyle i}
) such that every closed
R
{\displaystyle R}
-ball in
X
i
{\displaystyle X_{i}}
intersects at most
n
+
1
{\displaystyle n+1}
subsets from
U
i
{\displaystyle {\mathcal {U}}_{i}}
.
Examples
If
X
{\displaystyle X}
is a metric space of bounded diameter then
asdim
(
X
)
=
0
{\displaystyle \operatorname {asdim} (X)=0}
.
asdim
(
R
)
=
asdim
(
Z
)
=
1
{\displaystyle \operatorname {asdim} (\mathbb {R} )=\operatorname {asdim} (\mathbb {Z} )=1}
.
asdim
(
R
n
)
=
n
{\displaystyle \operatorname {asdim} (\mathbb {R} ^{n})=n}
.
asdim
(
H
n
)
=
n
{\displaystyle \operatorname {asdim} (\mathbb {H} ^{n})=n}
.
Properties
If
Y
⊆
X
{\displaystyle Y\subseteq X}
is a subspace of a metric space
X
{\displaystyle X}
, then
asdim
(
Y
)
≤
asdim
(
X
)
{\displaystyle \operatorname {asdim} (Y)\leq \operatorname {asdim} (X)}
.
For any metric spaces
X
{\displaystyle X}
and
Y
{\displaystyle Y}
one has
asdim
(
X
×
Y
)
≤
asdim
(
X
)
+
asdim
(
Y
)
{\displaystyle \operatorname {asdim} (X\times Y)\leq \operatorname {asdim} (X)+\operatorname {asdim} (Y)}
.
If
A
,
B
⊆
X
{\displaystyle A,B\subseteq X}
then
asdim
(
A
∪
B
)
≤
max
{
asdim
(
A
)
,
asdim
(
B
)
}
{\displaystyle \operatorname {asdim} (A\cup B)\leq \max\{\operatorname {asdim} (A),\operatorname {asdim} (B)\}}
.
If
f
:
Y
→
X
{\displaystyle f:Y\to X}
is a coarse embedding (e.g. a quasi-isometric embedding), then
asdim
(
Y
)
≤
asdim
(
X
)
{\displaystyle \operatorname {asdim} (Y)\leq \operatorname {asdim} (X)}
.
If
X
{\displaystyle X}
and
Y
{\displaystyle Y}
are coarsely equivalent metric spaces (e.g. quasi-isometric metric spaces), then
asdim
(
X
)
=
asdim
(
Y
)
{\displaystyle \operatorname {asdim} (X)=\operatorname {asdim} (Y)}
.
If
X
{\displaystyle X}
is a real tree then
asdim
(
X
)
≤
1
{\displaystyle \operatorname {asdim} (X)\leq 1}
.
Let
f
:
X
→
Y
{\displaystyle f:X\to Y}
be a Lipschitz map from a geodesic metric space
X
{\displaystyle X}
to a metric space
Y
{\displaystyle Y}
. Suppose that for every
r
>
0
{\displaystyle r>0}
the set family
{
f
−
1
(
B
r
(
y
)
)
}
y
∈
Y
{\displaystyle \{f^{-1}(B_{r}(y))\}_{y\in Y}}
satisfies the inequality
asdim
≤
n
{\displaystyle \operatorname {asdim} \leq n}
uniformly. Then
asdim
(
X
)
≤
asdim
(
Y
)
+
n
.
{\displaystyle \operatorname {asdim} (X)\leq \operatorname {asdim} (Y)+n.}
See[ 3]
If
X
{\displaystyle X}
is a metric space with
asdim
(
X
)
<
∞
{\displaystyle \operatorname {asdim} (X)<\infty }
then
X
{\displaystyle X}
admits a coarse (uniform) embedding into a Hilbert space.[ 4]
If
X
{\displaystyle X}
is a metric space of bounded geometry with
asdim
(
X
)
≤
n
{\displaystyle \operatorname {asdim} (X)\leq n}
then
X
{\displaystyle X}
admits a coarse embedding into a product of
n
+
1
{\displaystyle n+1}
locally finite simplicial trees.[ 5]
Asymptotic dimension in geometric group theory
Asymptotic dimension achieved particular prominence in geometric group theory after a 1998 paper of Guoliang Yu [ 2]
, which proved that if
G
{\displaystyle G}
is a finitely generated group of finite homotopy type (that is with a classifying space of the homotopy type of a finite CW-complex) such that
asdim
(
G
)
<
∞
{\displaystyle \operatorname {asdim} (G)<\infty }
, then
G
{\displaystyle G}
satisfies the Novikov conjecture . As was subsequently shown,[ 6] finitely generated groups with finite asymptotic dimension are topologically amenable , i.e. satisfy Guoliang Yu 's Property A introduced in[ 7] and equivalent to the exactness of the reduced C*-algebra of the group.
If
G
{\displaystyle G}
is a word-hyperbolic group then
asdim
(
G
)
<
∞
{\displaystyle \operatorname {asdim} (G)<\infty }
.[ 8]
If
G
{\displaystyle G}
is relatively hyperbolic with respect to subgroups
H
1
,
…
,
H
k
{\displaystyle H_{1},\dots ,H_{k}}
each of which has finite asymptotic dimension then
asdim
(
G
)
<
∞
{\displaystyle \operatorname {asdim} (G)<\infty }
.[ 9]
asdim
(
Z
n
)
=
n
{\displaystyle \operatorname {asdim} (\mathbb {Z} ^{n})=n}
.
If
H
≤
G
{\displaystyle H\leq G}
, where
H
,
G
{\displaystyle H,G}
are finitely generated, then
asdim
(
H
)
≤
asdim
(
G
)
{\displaystyle \operatorname {asdim} (H)\leq \operatorname {asdim} (G)}
.
For Thompson's group F we have
a
s
d
i
m
(
F
)
=
∞
{\displaystyle asdim(F)=\infty }
since
F
{\displaystyle F}
contains subgroups isomorphic to
Z
n
{\displaystyle \mathbb {Z} ^{n}}
for arbitrarily large
n
{\displaystyle n}
.
If
G
{\displaystyle G}
is the fundamental group of a finite graph of groups
A
{\displaystyle \mathbb {A} }
with underlying graph
A
{\displaystyle A}
and finitely generated vertex groups, then[ 10]
asdim
(
G
)
≤
1
+
max
v
∈
V
Y
asdim
(
A
v
)
.
{\displaystyle \operatorname {asdim} (G)\leq 1+\max _{v\in VY}\operatorname {asdim} (A_{v}).}
Mapping class groups of orientable finite type surfaces have finite asymptotic dimension.[ 11]
Let
G
{\displaystyle G}
be a connected Lie group and let
Γ
≤
G
{\displaystyle \Gamma \leq G}
be a finitely generated discrete subgroup. Then
a
s
d
i
m
(
Γ
)
<
∞
{\displaystyle asdim(\Gamma )<\infty }
.[ 12]
It is not known if
O
u
t
(
F
n
)
{\displaystyle Out(F_{n})}
has finite asymptotic dimension for
n
>
2
{\displaystyle n>2}
.[ 13]
References
^ Gromov, Mikhael (1993). "Asymptotic Invariants of Infinite Groups". Geometric Group Theory . London Mathematical Society Lecture Note Series. Vol. 2. Cambridge University Press. ISBN 978-0-521-44680-8 .
^ a b Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension". Annals of Mathematics . 147 (2): 325– 355. doi :10.2307/121011 . JSTOR 121011 . S2CID 17189763 .
^ Bell, G.C.; Dranishnikov, A.N. (2006). "A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory" . Transactions of the American Mathematical Society . 358 (11): 4749– 64. doi :10.1090/S0002-9947-06-04088-8 . MR 2231870 .
^ Roe, John (2003). Lectures on Coarse Geometry . University Lecture Series. Vol. 31. American Mathematical Society. ISBN 978-0-8218-3332-2 .
^ Dranishnikov, Alexander (2003). "On hypersphericity of manifolds with finite asymptotic dimension" . Transactions of the American Mathematical Society . 355 (1): 155– 167. doi :10.1090/S0002-9947-02-03115-X . MR 1928082 .
^ Dranishnikov, Alexander (2000). "Асимптотическая топология" [Asymptotic topology]. Uspekhi Mat. Nauk (in Russian). 55 (6): 71– 16. doi :10.4213/rm334 . Dranishnikov, Alexander (2000). "Asymptotic topology". Russian Mathematical Surveys . 55 (6): 1085– 1129. arXiv :math/9907192 . Bibcode :2000RuMaS..55.1085D . doi :10.1070/RM2000v055n06ABEH000334 . S2CID 250889716 .
^ Yu, Guoliang (2000). "The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space". Inventiones Mathematicae . 139 (1): 201– 240. Bibcode :2000InMat.139..201Y . CiteSeerX 10.1.1.155.1500 . doi :10.1007/s002229900032 . S2CID 264199937 .
^ Roe, John (2005). "Hyperbolic groups have finite asymptotic dimension" . Proceedings of the American Mathematical Society . 133 (9): 2489– 90. doi :10.1090/S0002-9939-05-08138-4 . MR 2146189 .
^ Osin, Densi (2005). "Asymptotic dimension of relatively hyperbolic groups" . International Mathematics Research Notices . 2005 (35): 2143– 61. arXiv :math/0411585 . doi :10.1155/IMRN.2005.2143 . S2CID 16743152 .
^ Bell, G.; Dranishnikov, A. (2004). "On asymptotic dimension of groups acting on trees". Geometriae Dedicata . 103 (1): 89– 101. arXiv :math/0111087 . doi :10.1023/B:GEOM.0000013843.53884.77 . S2CID 14631642 .
^ Bestvina, Mladen; Fujiwara, Koji (2002). "Bounded cohomology of subgroups of mapping class groups". Geometry & Topology . 6 (1): 69– 89. arXiv :math/0012115 . doi :10.2140/gt.2002.6.69 . S2CID 11350501 .
^ Ji, Lizhen (2004). "Asymptotic dimension and the integral K-theoretic Novikov conjecture for arithmetic groups" (PDF) . Journal of Differential Geometry . 68 (3): 535– 544. doi :10.4310/jdg/1115669594 .
^ Vogtmann, Karen (2015). "On the geometry of Outer space" . Bulletin of the American Mathematical Society . 52 (1): 27– 46. doi :10.1090/S0273-0979-2014-01466-1 . MR 3286480 . Ch. 9.1
Further reading