Arthrobacter agilis is a plant growth promoting and cold active hydrolytic enzymes producing psychrotrophic bacterium, isolated from Pangong Lake, a subglacial lake in north western Himalayas, India.[12] Genome analysis revealed metabolic versatility with genes involved in metabolism and cold shock adaptation, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. The genome of Arthrobacter agilis strain L77 consists of 3,608,439 bp (3.60 Mb) of a circular chromosome. The genome comprises 3316 protein coding genes and 74 RNA genes, 725 hypothetical proteins, 25 pseudo-genes and 1404 unique genes.[13] The candidate genes coding for hydrolytic enzymes and cold shock proteins were identified in the genome. Arthrobacter agilis strain L77 will serve as a source for antifreeze proteins, functional enzymes and other bioactive molecules in future bioprospecting projects.[14]
^Ulber, vol. ed. Yves Le Gal ; Roldand (2005). Marine biotechnology ([Standing order]. ed.). Berlin: Springer. ISBN978-3-540-25669-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Miller, edited by Robert V.; Whyte, Lyle G. (2012). Polar microbiology : life in a deep freeze. Washington, DC: ASM Press. ISBN978-1-55581-604-9. {{cite book}}: |first1= has generic name (help)
^editors, Antonio Ventosa, Aharon Oren, Yanhe Ma (2011). Halophiles and hypersaline environments current research and future trends. Berlin: Springer. ISBN978-3-642-20198-1. {{cite book}}: |last1= has generic name (help)CS1 maint: multiple names: authors list (link)
^Velázquez-Becerra, C; Macías-Rodríguez, LI; López-Bucio, J; Flores-Cortez, I; Santoyo, G; Hernández-Soberano, C; Valencia-Cantero, E (December 2013). "The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro". Protoplasma. 250 (6): 1251–62. doi:10.1007/s00709-013-0506-y. PMID23674267. S2CID17393074.
^Kim, edited by Se-Kwon (2013). Marine biomaterials characterization, isolation, and applications. Boca Raton: Taylor & Francis. ISBN978-1-4665-0565-0. {{cite book}}: |first1= has generic name (help)
^Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Tyagi, Satya Prakash; Kaushik, Rajeev; Saxena, Anil K. (2014-11-05). "Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India)". World Journal of Microbiology and Biotechnology. 31 (1): 95–108. doi:10.1007/s11274-014-1768-z. ISSN0959-3993. PMID25371316. S2CID35820307.
Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes Iveth; López-Bucio, José; Altamirano-Hernández, Josué; Flores-Cortez, Idolina; Valencia-Cantero, Eduardo (28 September 2010). "A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro". Plant and Soil. 339 (1–2): 329–340. doi:10.1007/s11104-010-0583-z. S2CID24280343.
ed.-in-chief, George M. Garrity (2012). Bergey's manual of systematic bacteriology (2nd ed.). New York: Springer Science + Business Media. ISBN978-0-387-68233-4. {{cite book}}: |last1= has generic name (help)
editor, Naveen Kumar Arora (2013). Plant microbe symbiosis : fundamentals and advances. New Delhi: Springer. ISBN978-81-322-1287-4. {{cite book}}: |last1= has generic name (help)
(ed.), Koki Horikoshi (2011). Extremophiles handbook. Tokyo: Springer. ISBN978-4-431-53897-4. {{cite book}}: |last1= has generic name (help)