Aminophosphine

In organophosphorus chemistry, aminophosphines are compounds with the formula R3−nP(NR2)n where R is a hydrogen or organic substituent, and n = 0, 1, or 2. At one extreme, the parents H2PNH2 and P(NH2)3 are lightly studied and fragile. At the other extreme, tris(dimethylamino)phosphine (P(NMe2)3) is commonly available. Intermediate members are known, such as Ph2PN(H)Ph. Aminophosphines are typically colorless and reactive to oxygen. Aminophosphines are pyramidal geometry at phosphorus.[1]

Parent members

Structure of P(NMe2)3.
The aminophosphine called the Verkade base is a superbase.

The fundamental aminophosphines have the formulae PH3−n(NH2)n (n = 1, 2, or 3). Fundamental aminophosphines can not be isolated in a practical quantities but have been examined theoretically. H2NPH2 is predicted to be more stable than the P(V) tautomer HN=PH3.[2]

Secondary amines are more straightforward. Trisaminophosphines are made by treating phosphorus trichloride with secondary amines:

PCl3 + 6 HNMe2 → (Me2N)3P + 3 [H2NMe2]Cl

Aminophosphine chlorides

Structure of Me2NPCl2.

The amination of phosphorus trihalides occur sequentially, with each amination proceeding slower than before:[3]

PCl3 + 2 HNMe2 → Me2NPCl2 + [H2NMe2]Cl
Me2NPCl2 + 2 HNMe2 → (Me2N)2PCl + [H2NMe2]Cl
(Me2N)2PCl + 2 HNMe2 → (Me2N)3P + [H2NMe2]Cl
Monosubstitution selectivity improves with bulky amines such as diisopropylamine.[4] Commercially available aminophosphine chlorides include dimethylaminophosphorus dichloride and bis(dimethylamino)phosphorus chloride.

Methylamine and trifluorophosphine react to give the diphosphine MeN(PF2)2:

2 PF3 + 3 MeNH2 → MeN(PF2)2 + 2 [MeNH3]F

Me(PF2)2 is a bridging ligand in organometallic chemistry.

Aminophosphines can also made from organophosphorus chlorides and amines.[5] Chlorodiphenylphosphine and diethylamine react to give an aminophosphine:[1][6]

Ph2PCl + 2 HNEt2 → Ph2PNEt2 + [H2NEt2]Cl

Primary amines react with phosphorus(III) chlorides to give aminophosphines with acidic α-NH centers:[7]

Ph2PCl + 2 H2NR → Ph2PN(H)R + [H3NR]Cl

Reactions

Protonolysis

Protic reagents attack the P-N bond. Alcoholysis readily occurs:

Ph2PNEt2 + ROH → Ph2POR + HNEt2

The P-N bond reverts to the chloride when treated with anhydrous hydrogen chloride:

Ph2PNEt2 + HCl → Ph2PCl + HNEt2

Transamination similarly converts one aminophosphine to another:

P(NMe2)3 + R2NH ⇌ P(NR2)(NMe2)2 + HNMe2

With tris(dimethylamino)phosphine, dimethylamine evaporation can drive the equilibrium.[8]

Since Grignard reagents do not attack P-NR2 bond, aminophosphine chlorides are useful reagents in preparing unsymmetrical tertiary phosphines. Illustrative is converting dimethylaminophosphorus dichloride to chlorodimethylphosphine:[9]

2 MeMgBr + Me2NPCl2 → Me2NPMe2 + 2 MgBrCl
Me2NPMe2 + 2 HCl → ClPMe2 + Me2NH2Cl

Also, illustrative is the synthesis of 1,2-bis(dichlorophosphino)benzene using (Et2N)2PCl (Et = ethyl). This route gives C6H4[P(NEt2)2]2, which is treated with hydrogen chloride:[10]

C6H4[P(NEt2)2]2 + 8 HCl → C6H4(PCl2)2 + 4 Et2NH2Cl

Conversion to phosphenium salts

Diaminophosphorus chlorides and tris(dimethylamino)phosphine are precursors to phosphenium ions of the type [(R2N)2P]+:[11][12]

R2PCl + AlCl3 → [R2P+]AlCl4
P(NMe2)3 + 2 HOTf → [P(NMe2)2]OTf + [H2NMe2]OTf

Oxidation and quaternization

Typical aminophosphines oxidize. Alkylation, such as by methyl iodide, gives the phosphonium cation.

Addition to carbonyls

In diazaphospholenes the polarity of the P-H bond is inverted compared to traditional secondary phosphines. They have some hydridic character. One manifestation of this polarity is their reactivity toward benzophenone in yet another way.[13]

Diazaphospholene phosphine hydride
Diazaphospholene phosphine hydride

References

  1. ^ a b Mateo Alajarín; Carmen López-Leonardo; Pilar Llamas-Lorente (2005). "The Chemistry of Phosphinous Amides (Aminophosphanes): Old Reagents with New Applications". Top. Curr. Chem. Topics in Current Chemistry. 250: 77–106. doi:10.1007/b100982. ISBN 978-3-540-22498-3.
  2. ^ Sudhakar, Pamidighantam V.; Lammertsma, Koop (1991). "Nature of Bonding in Phosphazoylides. A Comparative Study of N2H4, NPH4, and P2H4". Journal of the American Chemical Society. 113pages=1899–1906 (6): 1899–1906. doi:10.1021/ja00006a005.
  3. ^ Morse, J. G.; Cohn, K.; Rudolph, R. W.; Parry, R. W. (1967). "Substituted Difluoro- and Dichlorophosphines". Inorganic Syntheses. Inorganic Syntheses. Vol. 22. pp. 147–156. doi:10.1002/9780470132418.ch22. ISBN 9780470132418.
  4. ^ Denmark, Scott; Ryabchuk, Pavel; Min Chi, Hyung; Matviitsuk, Anastassia (2019). "Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoetherification". Organic Syntheses. 96: 400–417. doi:10.15227/orgsyn.096.0400. PMC 8439352. PMID 34526731.
  5. ^ Agbossou, Francine; Carpentier, Jean-François; Hapiot, Frédéric; Suisse, Isabelle; Mortreux, André (1998). "The aminophosphine-phosphinites and related ligands: Synthesis, coordination chemistry and enantioselective catalysis1Dedicated to the memory of Professor Francis Petit". Coordination Chemistry Reviews. 178–180: 1615–1645. doi:10.1016/S0010-8545(98)00088-5.
  6. ^ Smith, Craig R.; Mans, Daniel J.; RajanBabu, T. V. (2008). "(R)-2,2'-Binaphthoyl-(S,s)-Di(1-Phenylethyl) Aminophosphine. Scalable Protocols for the Syntheses of Phosphoramidite (Feringa) Ligands". Organic Syntheses. 85: 238–247. doi:10.15227/orgsyn.085.0238. PMC 2719905. PMID 19655040.
  7. ^ Fei, Zhaofu; Dyson, Paul J. (2005). "The chemistry of phosphinoamides and related compounds". Coordination Chemistry Reviews. 249 (19–20): 2056–2074. doi:10.1016/j.ccr.2005.03.014.
  8. ^ Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J. G. (1989). "New Prophosphatranes: Novel intermediates to five-coordinate phosphatranes". Zeitschrift für Anorganische und Allgemeine Chemie. 578: 75–80. doi:10.1002/zaac.19895780109.
  9. ^ Burg, Anton B.; Slota, Peter J. (1958). "Dimethylaminodimethylphosphine". Journal of the American Chemical Society. 80 (5): 1107–1109. doi:10.1021/ja01538a023.
  10. ^ Reetz, Manfred T.; Moulin, Dominique; Gosberg, Andreas (2001). "BINOL-Based Diphosphonites as Ligands in the Asymmetric Rh-Catalyzed Conjugate Addition of Arylboronic Acids". Organic Letters. 3 (25): 4083–4085. doi:10.1021/ol010219y. PMID 11735590.
  11. ^ Cowley, A. H.; Kemp, R. A. (1985-10-01). "Synthesis and reaction chemistry of stable two-coordinate phosphorus cations (phosphenium ions)". Chemical Reviews. 85 (5): 367–382. doi:10.1021/cr00069a002. ISSN 0009-2665.
  12. ^ Krannich, Larry K.; Kanjolia, Ravindra K.; Watkins, Charles L. (1985-09-02). "Synthesis and characterization of some aminophosphonium chlorides". Inorganica Chimica Acta. 103 (1): 1–8. doi:10.1016/S0020-1693(00)85202-0. ISSN 0020-1693.
  13. ^ Burck, S.; Gudat, D.; Nieger, M.; Du Mont, W.-W. (2006). "P-Hydrogen-Substituted 1,3,2-Diazaphospholenes: Molecular Hydrides". Journal of the American Chemical Society. 128 (12): 3946–3955. doi:10.1021/ja057827j. PMID 16551102.

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia