In organophosphorus chemistry, aminophosphines are compounds with the formula R3−nP(NR2)n where R is a hydrogen or organic substituent, and n = 0, 1, or 2. At one extreme, the parents H2PNH2 and P(NH2)3 are lightly studied and fragile. At the other extreme, tris(dimethylamino)phosphine (P(NMe2)3) is commonly available. Intermediate members are known, such as Ph2PN(H)Ph. Aminophosphines are typically colorless and reactive to oxygen. Aminophosphines are pyramidal geometry at phosphorus.[1]
The fundamental aminophosphines have the formulae PH3−n(NH2)n (n = 1, 2, or 3). Fundamental aminophosphines can not be isolated in a practical quantities but have been examined theoretically. H2NPH2 is predicted to be more stable than the P(V) tautomer HN=PH3.[2]
Secondary amines are more straightforward. Trisaminophosphines are made by treating phosphorus trichloride with secondary amines:
PCl3 + 6 HNMe2 → (Me2N)3P + 3 [H2NMe2]Cl
Aminophosphine chlorides
Structure of Me2NPCl2.
The amination of phosphorus trihalides occur sequentially, with each amination proceeding slower than before:[3]
PCl3 + 2 HNMe2 → Me2NPCl2 + [H2NMe2]Cl
Me2NPCl2 + 2 HNMe2 → (Me2N)2PCl + [H2NMe2]Cl
(Me2N)2PCl + 2 HNMe2 → (Me2N)3P + [H2NMe2]Cl
Monosubstitution selectivity improves with bulky amines such as diisopropylamine.[4] Commercially available aminophosphine chlorides include dimethylaminophosphorus dichloride and bis(dimethylamino)phosphorus chloride.
Primary amines react with phosphorus(III) chlorides to give aminophosphines with acidic α-NH centers:[7]
Ph2PCl + 2 H2NR → Ph2PN(H)R + [H3NR]Cl
Reactions
Protonolysis
Protic reagents attack the P-N bond. Alcoholysis readily occurs:
Ph2PNEt2 + ROH → Ph2POR + HNEt2
The P-N bond reverts to the chloride when treated with anhydrous hydrogen chloride:
Ph2PNEt2 + HCl → Ph2PCl + HNEt2
Transamination similarly converts one aminophosphine to another:
P(NMe2)3 + R2NH ⇌ P(NR2)(NMe2)2 + HNMe2
With tris(dimethylamino)phosphine, dimethylamine evaporation can drive the equilibrium.[8]
Since Grignard reagents do not attack P-NR2 bond, aminophosphine chlorides are useful reagents in preparing unsymmetrical tertiary phosphines. Illustrative is converting dimethylaminophosphorus dichloride to chlorodimethylphosphine:[9]
Typical aminophosphines oxidize. Alkylation, such as by methyl iodide, gives the phosphonium cation.
Addition to carbonyls
In diazaphospholenes the polarity of the P-H bond is inverted compared to traditional secondary phosphines. They have some hydridic character. One manifestation of this polarity is their reactivity toward benzophenone in yet another way.[13]
Diazaphospholene phosphine hydride
References
^ abMateo Alajarín; Carmen López-Leonardo; Pilar Llamas-Lorente (2005). "The Chemistry of Phosphinous Amides (Aminophosphanes): Old Reagents with New Applications". Top. Curr. Chem. Topics in Current Chemistry. 250: 77–106. doi:10.1007/b100982. ISBN978-3-540-22498-3.
^Sudhakar, Pamidighantam V.; Lammertsma, Koop (1991). "Nature of Bonding in Phosphazoylides. A Comparative Study of N2H4, NPH4, and P2H4". Journal of the American Chemical Society. 113pages=1899–1906 (6): 1899–1906. doi:10.1021/ja00006a005.
^Morse, J. G.; Cohn, K.; Rudolph, R. W.; Parry, R. W. (1967). "Substituted Difluoro- and Dichlorophosphines". Inorganic Syntheses. Inorganic Syntheses. Vol. 22. pp. 147–156. doi:10.1002/9780470132418.ch22. ISBN9780470132418.
^Agbossou, Francine; Carpentier, Jean-François; Hapiot, Frédéric; Suisse, Isabelle; Mortreux, André (1998). "The aminophosphine-phosphinites and related ligands: Synthesis, coordination chemistry and enantioselective catalysis1Dedicated to the memory of Professor Francis Petit". Coordination Chemistry Reviews. 178–180: 1615–1645. doi:10.1016/S0010-8545(98)00088-5.
^Fei, Zhaofu; Dyson, Paul J. (2005). "The chemistry of phosphinoamides and related compounds". Coordination Chemistry Reviews. 249 (19–20): 2056–2074. doi:10.1016/j.ccr.2005.03.014.
^Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J. G. (1989). "New Prophosphatranes: Novel intermediates to five-coordinate phosphatranes". Zeitschrift für Anorganische und Allgemeine Chemie. 578: 75–80. doi:10.1002/zaac.19895780109.
^Burg, Anton B.; Slota, Peter J. (1958). "Dimethylaminodimethylphosphine". Journal of the American Chemical Society. 80 (5): 1107–1109. doi:10.1021/ja01538a023.
^Reetz, Manfred T.; Moulin, Dominique; Gosberg, Andreas (2001). "BINOL-Based Diphosphonites as Ligands in the Asymmetric Rh-Catalyzed Conjugate Addition of Arylboronic Acids". Organic Letters. 3 (25): 4083–4085. doi:10.1021/ol010219y. PMID11735590.
^Cowley, A. H.; Kemp, R. A. (1985-10-01). "Synthesis and reaction chemistry of stable two-coordinate phosphorus cations (phosphenium ions)". Chemical Reviews. 85 (5): 367–382. doi:10.1021/cr00069a002. ISSN0009-2665.