Ames National Laboratory
Ames National Laboratory, formerly Ames Laboratory, is a United States Department of Energy national laboratory located in Ames, Iowa, and affiliated with Iowa State University. It is a top-level national laboratory for research on national security, energy, and the environment. The laboratory conducts research into areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration. It is located on the campus of Iowa State University. In January 2013 the Department of Energy announced the establishment of the Critical Materials Institute (CMI) at Ames Laboratory, with a mission to develop solutions to the domestic shortages of rare-earth metals and other materials critical to US energy security. History1940sIn 1942, Frank Spedding of Iowa State College, an expert in the chemistry of rare-earth elements, agreed to set up and direct a chemical research and development program, since called the Ames Project, to accompany the Manhattan Project's existing physics program. Its purpose was to produce high purity uranium from uranium ores. Harley Wilhelm developed new methods for both reducing and casting uranium metal, making it possible to cast large ingots of the metal and reduce production costs by as much as twenty-fold. About one-third, or around two tons, of the uranium used in the first self-sustaining nuclear reaction at the University of Chicago was provided through these procedures, now known as the Ames Process. The Ames Project produced more than two million pounds (1,000 short tons; 910,000 kg) of uranium for the Manhattan Project until industry took over the process in 1945. The Ames Project received the Army-Navy 'E' Award for Excellence in Production on October 12, 1945, signifying two-and-a-half years of excellence in industrial production of metallic uranium as a vital war material. Iowa State University is unique among educational institutions to have received this award for outstanding service, an honor normally given to industry. Other key accomplishments related to the project included:
Ames Laboratory was formally established in 1947 by the United States Atomic Energy Commission as a result of the Ames Project's success. 1950sDuring the 1950s the Lab's growing reputation for its work with rare-earth metals rapidly increased its workload. As the country explored the uses of nuclear power, lab scientists studied nuclear fuels and structural materials for nuclear reactors. Processes developed at Ames Laboratory resulted in the production of the purest rare-earth metals in the world while at the same time greatly reducing their price. In most cases, Lab facilities served as models for large-scale production of rare-earth metals. Lab scientists took advantage of Iowa State University's synchrotron to pursue medium-energy physics research. Analytical chemistry efforts expanded to keep up with the need to analyze new materials. Other key accomplishments from the 1950s included:
1960sDuring the 1960s the Lab reached peak employment as its scientists continued exploring new materials. As part of that effort, the Lab built a 5-megawatt heavy water reactor for neutron diffraction studies and additional isotope separation research. The United States Atomic Energy Commission established the Rare-Earth Information Center at Ames Lab to provide the scientific and technical communities with information about rare-earth metals and their compounds. Other key accomplishments from the 1960s included:
1970sDuring the 1970s, as the United States Atomic Energy Commission evolved into the United States Department of Energy, efforts diversified as some research programs closed and new ones opened. Federal officials consolidated reactor facilities, leading to the closure of the research reactor. Ames Laboratory responded by putting new emphasis on applied mathematics, solar power, fossil fuels and pollution control. Innovative analytical techniques were developed to provide precise information from increasingly small samples. Foremost among them was inductively coupled plasma-atomic emission spectroscopy, which could rapidly and simultaneously detect up to 40 different trace metals from a small sample. Other key accomplishments from the 1970s included:
1980sIn the 1980s research at Ames Laboratory evolved to meet local and national energy needs. Fossil energy research focused on ways to burn coal cleaner. New technologies were developed to clean up nuclear waste sites. High-performance computing research augmented the applied mathematics and solid-state physics programs. Ames Laboratory became a national leader in the fields of superconductivity and nondestructive evaluation. In addition, DOE established the Materials Preparation Center[1] to provide public access to the development of new materials. Other key accomplishments from the 1980s included:
1990sEncouraged by the United States Department of Energy, in the 1990s Ames Laboratory continued its efforts to transfer basic research findings to industry for the development of new materials, products, and processes. The Scalable Computing Laboratory[2] was established to find ways of making parallel computing accessible and cost-effective for the scientific community. Researchers discovered the first non-carbon example of buckyballs, a new material important in the field of microelectronics. Scientists developed a DNA sequencer that was 24 times faster than other devices, and a technique that assessed the nature of DNA damage by chemical pollutants. Other key accomplishments of the 1990s included:
2000s
2011 and beyond
Ames Laboratory directors
Notable alumni and facultyFrank Spedding (B.S. 1925, M.S. 1926) (deceased 1984), directed the chemistry phase of the Manhattan Project in World War II, which led to the world's first controlled nuclear reaction. He was Iowa State's second member of the National Academy of Sciences and the first director of the Ames Laboratory. Dr. Spedding won the Langmuir Award in 1933, Only Oscar K. Rice and Linus Pauling preceded him in this achievement. The award is now called the Award in Pure Chemistry of the American Chemical Society. He was the first Distinguished Professor of Sciences and Humanities at Iowa State (1957). Further awards included: William H. Nichols Award of the New York section of the American Chemical Society (1952); the James Douglas Gold Medal from the American Institute of Mining, Metallurgical, and Petroleum Engineers (1961) for achievements in nonferrous metallurgy; and the Francis J. Clamer Award from the Franklin Institute (1969) for achievements in metallurgy. Harley Wilhelm (Ph.D. 1931) (deceased 1995), developed the most efficient process to produce uranium metal for the Manhattan Project, the Ames Process, a process still in use. Velmer A. Fassel (Ph.D. 1947)(deceased 1998), developed the inductively coupled plasma atomic emission spectroscopy (ICP-AES) analytical process, used for chemical analysis worldwide; former deputy director of the Ames Laboratory. Karl A. Gschneidner, Jr. (B.S. 1952, Ph.D 1957) (deceased) elected Fellow of the National Academy of Engineering in 2007, Gschneidner was a world authority in the physical metallurgy, and thermal and electrical behavior of rare-earth materials. Gschneidner was a Fellow of the Minerals, Metals, and Materials Society, Fellow of the American Society for Materials International, and Fellow of the American Physical Society. James Renier (Ph.D. 1955) (deceased 2019),[7] chairman and chief executive officer of Honeywell Inc. (1988–93). Darleane C. Hoffman (Ph.D. 1951), a 1997 recipient of the National Medal of Science, helped confirm the existence of element 106, seaborgium. John Weaver (Ph.D. 1973), named Scientist of the Year for 1997 by R&D Magazine. Weaver heads the Department of Materials Science and Engineering at the University of Illinois, Urbana-Champaign. James Halligan (B.S. 1962, M.S. 1965, Ph.D. 1967), president of Oklahoma State University (1994–2002). Allan Mackintosh (deceased 1995), expert on rare-earth metals and President of the European Physical Society. James W. Mitchell (Ph.D. 1970), named Iowa State University's first George Washington Carver Professor in 1994. He won two R&D 100 Awards and the prestigious Percy L. Julian Research Award given by the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers for innovative industrial research. Mitchell was vice president of the Materials Research Laboratory at Bell Laboratories, Lucent Technologies. John Corbett (deceased 2013), chemistry and Ames Laboratory, member of the National Academy of Sciences, created the first non-carbon example of buckyballs; discovered more than 1,000 new materials. Kai-Ming Ho, Che-Ting Chan, and Costas Soukoulis, physics and Ames Laboratory, were the first to design and demonstrate the existence of photonic band gap crystals, a discovery that led to the development of the rapidly expanding field of photonic crystals. Photonic crystals are expected to have revolutionary applications in optical communication and other areas of light technology. Soukoulis is a recipient of the Descartes Prize for Excellence in Scientific Collaborative Research, the European Union’s highest honor in the field of science. Dan Shechtman, materials science and engineering and Associate of Ames National Laboratory, awarded the 2011 Nobel Prize in Chemistry for the discovery of quasicrystals at Johns Hopkins University.[4][5] Patricia Thiel (deceased 2020), chemistry and Ames Laboratory, received one of the first 100 National Science Foundation Women in Science and Engineering Awards (presented in 1991). Also received the AVS Medard W. Welch Award, which recognizes outstanding research in the fields of materials, interfaces, and processing (presented in 2014). Edward Yeung, chemistry and Ames Lab, first person to quantitatively analyze the chemical contents of a single human red blood cell, using a device that he designed and built; the development could lead to improved detection of AIDS, cancer and genetic diseases such as Alzheimer's, muscular dystrophy and Down's syndrome. Yeung has won four R&D 100 Awards and an Editor's Choice award from R&D Magazine for this pioneering work. He was the 2002 recipient of the American Chemical Society Award in Chromatography for his research in chemical separations.[8] Klaus Ruedenberg, physics and Ames Laboratory, 2001 recipient of the American Chemical Society Award in Theoretical Chemistry for his innovative research in the field of theoretical chemistry. Paul Canfield, Sergey Bud'ko, Costas Soukoulis, physics and Ames Laboratory, named to Thomas Reuters' World's Most Influential Scientific Minds 2014. The award recognizes the greatest number of highly cited papers (among the top 1 percent for their subject field and year of publication between 2002 and 2012). Costas Soukoulis, physics and Ames Laboratory, received the Max Born Award from the Optical Society of America in 2014. The award honors a scientist who has made outstanding contributions to the scientific field of physical optics. References
External links |
Portal di Ensiklopedia Dunia