Let be a natural number, let be a positive real number, and let be a function which is continuous on the time interval and continuously differentiable on the -dimensional space . Let , be a continuous solution of the integral equation
Furthermore, let be continuously differentiable. We view as the unperturbed function, and as the perturbed function. Then it holds that
The Alekseev–Gröbner formula allows to express the global error in terms of the local error .
The Itô–Alekseev–Gröbner formula
The Itô–Alekseev–Gröbner formula[4] is a generalization of the Alekseev–Gröbner formula which states in the deterministic case, that for a continuously differentiable function it holds that
References
^Gröbner, Wolfgang (1960). Die Lie-Reihen und Ihre Anwendungen. Berlin: VEB Deutscher Verlag der Wissenschaften.
^Alekseev, V. "An estimate for the perturbations of the solution of ordinary differential equations (Russian)". Vestn. Mosk. Univ., Ser. I, Math. Meh. 2, 1961.
^Iserles, A. (2009). A first course in the numerical analysis of differential equations (second ed.). Cambridge: Cambridge Texts in Applied Mathematics, Cambridge University Press.
^Hudde, A.; Hutzenthaler, M.; Jentzen, A.; Mazzonetto, S. (2018). "On the Itô-Alekseev-Gröbner formula for stochastic differential equations". arXiv:1812.09857 [math.PR].