The asteroid orbits the Sun at a distance of 1.8–3.0 AU once every 3 years and 8 months (1,329 days). Its orbit has an eccentricity of 0.26 and an inclination of 24° with respect to the ecliptic.[1] The body's observation arc begins at Bergedorf, one week after its official discovery observation.[12]
Physical characteristics
Rotation, shape and pole
Photometric observations of Prisma gave a well defined rotational lightcurve with a period between 6.546 and 6.558 hours and a high brightness variation of 0.85–1.16 magnitude, which strongly indicates that the body has an elongated, non-spheroidal shape (U=3/3).[7][8]
A modeled lightcurve based on optical data from a large collaboration network also found a spin axis of (133.0°, −78.0°) in ecliptic coordinates (λ, β) (Q=n.a.).[9][10]
Diameter and albedo
According to the surveys carried out by the Japanese Akari satellite, and NASA's Wide-field Infrared Survey Explorer with its subsequent NEOWISE mission, Prisma measures between 7.38 and 9.27 kilometers in diameter and its surface has an albedo between 0.144 and 0.220.[5][6] The Collaborative Asteroid Lightcurve Link assumes a standard albedo of 0.23 and calculates a diameter of 7.22 kilometers based on an absolute magnitude of 12.92.[3]
^ abcdUsui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode:2011PASJ...63.1117U. doi:10.1093/pasj/63.5.1117. (online, AcuA catalog p. 153)
^ abHanus, J.; Durech, J.; Oszkiewicz, D. A.; Behrend, R.; Carry, B.; Delbo, M.; et al. (February 2016). "New and updated convex shape models of asteroids based on optical data from a large collaboration network". Astronomy and Astrophysics. 586: 24. arXiv:1510.07422. Bibcode:2016A&A...586A.108H. doi:10.1051/0004-6361/201527441.