Zoghman MebkhoutZoghman Mebkhout (* 1949) ist ein algerischer Mathematiker, der sich mit algebraischer Theorie von Differentialgleichungen (Theorie der D-Moduln) befasst. Er ist Forschungsdirektor des CNRS. Mebkhout wurde 1979 an der Universität Paris VII bei Jean-Louis Verdier mit der Schrift Local cohomology of complex analytical spaces promoviert.[1] Er löste gleichzeitig mit Masaki Kashiwara 1979 das Riemann-Hilbert-Problem in höheren Dimensionen (Riemann-Hilbert-Korrespondenz). Ihm gelangen auch wichtige Resultate teilweise mit Gilles Christol über die Struktur der Singularitäten von Differentialgleichungen im p-adischen Fall. Zum Beispiel bewies er 2001 den p-adischen Monodromiesatz[2] (der das Verhalten p-adischer Differentialgleichungen in der Nähe von Singularitäten mit p-adischen Galois-Darstellungen in Verbindung bringt, ähnlich wie im Riemann-Hilbert-Problem im komplexen Fall). Der Satz wurde von Richard Crew vermutet und etwa gleichzeitig mit Mebkhout unabhängig von Yves André[3] und Kiran Kedlaya[4] bewiesen. Die Untersuchungen haben Anwendungen in der arithmetischen Geometrie (Galoisdarstellungen, Endlichkeitssätze für p-adische Koeffizienten). Bei der Theorie p-adischer Differentialgleichungen spielten zuvor Bernard Dwork und Philippe Robba eine Pionierrolle. Alexander Grothendieck sieht Mebkhout mit seinen Arbeiten Ende der 1970er Jahre in Recoltes et Semaines und L´Enterrement als Fortsetzer von Grothendiecks eigenen Ideen und als zu Unrecht vernachlässigt.[5] 2002 erhielt er den Prix Servant. Schriften
Weblinks
Einzelnachweise
|
Portal di Ensiklopedia Dunia