Straffe BlätterungIn der Mathematik, insbesondere in Differentialgeometrie und Topologie sind straffe Blätterungen (engl.: taut foliations) Blätterungen, die sich durch Minimalflächen einer geeigneten Riemannschen Metrik realisieren lassen. DefinitionSei eine Mannigfaltigkeit. Eine Blätterung der Kodimension 1 heißt straff, wenn es zu jedem Blatt eine Abbildung gibt, deren Bild transversal schneidet. Realisierbarkeit durch MinimalflächenSei eine geschlossene, orientierte, differenzierbare Mannigfaltigkeit. Nach einem Satz von Rummler und Sullivan[1] sind die folgenden Bedingungen an eine transversal orientierbare Kodimension 1-Blätterung äquivalent:
Blätterungen ohne ReebkomponentenWenn eine Blätterung straff ist, kann es keine Reeb-Komponente, d. h. keine Teilmenge diffeomorph zu einer Reeb-Blätterung, geben. Für atoroidale 3-Mannigfaltigkeiten gilt auch die Umkehrung: jede Blätterung ohne Reeb-Komponenten ist straff. Straffe Blätterungen von 3-MannigfaltigkeitenFür straffe Blätterungen von 3-Mannigfaltigkeiten gibt es eine gut ausgearbeitete Strukturtheorie. Zunächst können nach dem Satz von Novikov-Zieschang auf einer geschlossenen, orientierbaren 3-Mannigfaltigkeit straffe Blätterungen nur dann existieren, wenn oder , und es müssen dann notwendigerweise alle Blätter inkompressibel sein.[2] Eine hinreichende Bedingung für die Existenz straffer Blätterungen liefert der Satz von Gabai: Sei M eine geschlossene, irreduzible 3-Mannigfaltigkeit mit , dann gibt es auf M eine straffe Blätterung. Man kann sogar jedes nichttriviale Element von als Blatt einer straffen Blätterung realisieren.[3] Gabais Beweis benutzt genarbte Mannigfaltigkeitshierarchien. Einen Zugang zur Struktur straffer Blätterungen auf 3-Mannigfaltigkeiten liefert der Satz von Palmeira: Wenn es auf einer geschlossenen, orientierbaren 3-Mannigfaltigkeit eine straffe Blätterung gibt, dann ist die universelle Überlagerung diffeomorph zum und die hochgehobene Blätterung ist eine Blätterung des durch Blätter diffeomorph zum .[4] Der Raum der Blätter (der hochgehobenen Blätterung) ist in diesem Fall eine (i.a. nicht-Hausdorffsche) 1-Mannigfaltigkeit und die straffe Blätterung wird also beschrieben durch eine Wirkung von auf einer 1-Mannigfaltigkeit. L-Räume haben keine straffen Blätterungen. Weblinks
Belege
|