Dieser Pfad kehrt nie zu einem bereits besuchten Punkt zurück.Drei Beispiele auf einem 8x8 Gittergraph
In der mathematischen Theorie der Irrfahrten sind selbstmeidende Pfade Wege auf einem Gitter, die nie zu einem bereits zuvor besuchten Punkt zurückkehren.
Selbstmeidende Pfade sind das einfachste mathematische Modell für die Anordnung langer Polymerketten.
Die Berechnung selbstmeidender Pfade ist ein zentrales Thema der Perkolationstheorie. Es gibt zahlreiche durch empirische Untersuchungen und Heuristiken gestützte Vermutungen über das Verhalten selbstmeidender Pfade. Mathematisch bewiesen ist von diesen Vermutungen aber nur wenig, gerade auch in den für Anwendungen interessanten niedrigen Dimensionen .
Ein selbstmeidender Pfad im Gitter ist ein Pfad (Weg), der jeden Gitterpunkt höchstens einmal besucht.
Anzahl selbstmeidender Pfade
Zu einem gegebenen Gitter sei die Anzahl selbstmeidender Pfade der Länge . Die Folge ist subadditiv und demzufolge existiert der Grenzwert
.
Er wird als die Zusammenhangskonstante (englisch: connective constant) des Gitters bezeichnet.
Das einzige Gitter, für das die Zusammenhangskonstante explizit bekannt ist, ist das Hexagonalgitter. Für dieses haben Duminil-Copin und Smirnow bewiesen, dass
Für , also für das Quadratgitter , kann man numerisch berechnen.
Numerische Experimente stützen die Vermutung, dass für alle Gitter asymptotisch
gilt, was bedeuten würde, dass im Gegensatz zum exponentiellen Faktor der subexponentielle Faktor für alle Gitter derselbe wäre.
N. Madras, G. Slade: The Self-Avoiding Walk. Birkhäuser, 1996, ISBN 0-8176-3891-1.
G. F. Lawler: Intersections of Random Walks. Birkhäuser, 1991, ISBN 0-8176-3892-X.
N. Madras, A. D. Sokal: The pivot algorithm – A highly efficient Monte-Carlo method for the self-avoiding walk. In: Journal of Statistical Physics. Band 50, 1988, S. 109–186. doi:10.1007/bf01022990.
↑Hugo Duminil-Copin, Stanislav Smirnov: The connective constant of the honeycomb lattice equals . In: Ann. of Math. Band 175, Nr. 3, 2012, S. 1653–1665.