Ein Sechzehneck oder Hexadekagon (von altgriechischἑκκαιδεκάγωνοςhekkaidekágōnos, deutsch ‚sechzehneckig‘)[1] ist ein Polygon mit 16 Seiten und 16 Ecken. Die Sechzehnecke können wie alle Polygone mit mind. vier Seiten in überschlagene und nicht überschlagene (einfache) Sechzehnecke unterteilt werden. Die einfachen wiederum in konkave und konvexe Sechzehnecke. Letztere lassen sich nach weiteren Kriterien wie Seitenlängen, Symmetrien oder Lage der Ecken unterscheiden.
Dieser Artikel behandelt im Folgenden das regelmäßige Sechzehneck – das konvex ist, sechzehn gleich lange Seiten hat und dessen Ecken auf einem gemeinsamen Umkreis liegen – sowie regelmäßige überschlagene Sechzehnecke.
Schon bei den griechischen Mathematikern der Antike war bekannt, dass ein regelmäßiges Sechzehneck mit Zirkel und Linealkonstruierbar ist. Dies wird deshalb möglich, weil es auch aus einem Quadrat bzw. Achteck durch (fortgesetzte) Verdoppelung der Eckenzahl generiert werden kann.
Der Mittelpunktswinkel oder Zentriwinkel wird von zwei benachbarten Umkreisradien eingeschlossen. In der allgemeinen Formel ist für die Variable die Zahl einzusetzen:
Seitenlänge
Für die Berechnung der Seitenlänge denkt man sich das Sechzehneck in 16 kongruente Dreiecke (Bestimmungsdreiecke) zerlegt. Nimmt man die Hälfte eines solchen Dreiecks, also ein rechtwinkliges Dreieck mit den Seiten , und sowie mit dem halben Zentriwinkel so gilt
durch Multiplikation mit erhält man
Algebraischer Ausdruck:
Umkreisradius
Der Umkreisradius bei gegebener Seitenlänge beträgt
Algebraischer Ausdruck:
Inkreisradius
Auch der Inkreisradius lässt sich mithilfe eines halbierten Bestimmungsdreiecks ermitteln. Es ergibt sich
durch Multiplikation mit erhält man
und weiter
wegen
gilt auch
Algebraischer Ausdruck:
Höhe
Die Höhe eines regelmäßigen Sechzehnecks ist das Doppelte des Inkreisradius.
Flächeninhalt
Der Flächeninhalt eines Dreiecks berechnet sich aus In einem Bestimmungsdreieck ist die Höhe gleich dem Inkreisradius . Der Flächeninhalt des gesamten Sechzehnecks, d. h. 16 Bestimmungsdreiecke, beträgt also
Mit dem in Inkreisradius hergeleiteten Ausdruck für folgt daraus
Im ersten Moment scheint es naheliegend, zuerst eine Seitenlänge des Achtecks mit dessen Umkreis zu zeichnen und anschließend den Mittelpunktswinkel zu halbieren, um die Seitenlänge des Sechzehnecks zu erhalten. Es ist jedoch auch möglich, den Mittelpunktswinkel in weniger Konstruktionsschritten zu bestimmen.
ES beginnt (Bild 1) mit dem Einzeichnen des Durchmessers anschließend folgen um Punkt und je ein Kreisbogen mit Radius die sich in und schneiden. Die Verbindungslinie halbiert den Durchmesser in Nach dem Ziehen des Umkreises wird der so entstandene Schnittpunkt mit verbunden. Nun zieht man einen Kreisbogen um mit dem Radius der die Verbindungslinie in schneidet. Schließlich folgt eine Halbgerade ab dem Mittelpunkt durch bis sie den Umkreis im Eckpunkt schneidet. Somit ist die erste Seite des entstehenden Sechzehnecks gefunden. Nach dem Einzeichnen der restlichen fünfzehn Seiten ist das Sechzehneck fertiggestellt.
Der Mittelpunktswinkel mit der Winkelweite ergibt sich mithilfe der Innenwinkel des gleichschenkligen Dreiecks
daraus folgt
Eine alternative Konstruktion (Bild 2) halbiert den Umkreisradius und einen -Winkel.
Zuerst bezeichnet man die Endpunkte der Seitenlänge mit und Es folgen ein Kreisbogen mit dem Radius um den Punkt und ein zweiter mit gleichem Radius um ; es ergeben sich die Schnittpunkte und . Es geht weiter mit der Halbgeraden ab durch und der Parallelen zu ab dem Punkt , die den Kreisbogen um in schneidet. Nun wird der Punkt mit verbunden; es entsteht der Schnittpunkt . Anschließend halbiert eine Winkelhalbierende den Winkel ; sie schneidet die Halbgerade in . Somit ist der Mittelpunkt des entstehenden Sechzehnecks bestimmt. Den Mittelpunktswinkel liefert die zweite Halbgerade ab durch Nach dem Einzeichnen des Umkreises um und durch ergeben sich die Ecken und des Sechzehnecks. Jetzt, die noch fehlende Seitenlängen auf den Umkreis abtragen und abschließend die benachbarten Ecken zu einem fertigen Sechzehneck miteinander verbinden.
Der Mittelpunktswinkel mit der Winkelweite ergibt sich mithilfe der Innenwinkel des gleichschenkligen Dreiecks
daraus folgt
Regelmäßige überschlagene Sechzehnecke
Ein regelmäßiges überschlagenes Sechzehneck ergibt sich, wenn beim Verbinden der sechzehn Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen, wobei die Anzahl der Eckpunkte angibt und jeder -te Punkt verbunden wird.
Es gibt nur drei regelmäßige Sechzehnstrahlsterne, auch Hexadekagramme genannt.
Die „Sterne“ mit den Schläfli-Symbolen {16/2} und {16/14} sind regelmäßige Achtecke bzw. die mit den Schläfli-Symbolen {16/4} und {16/12} sind Quadrate. Die Sterne mit den Schläfli-Symbolen {16/6} und {16/10} sind Achtersterne, auch Oktogramme genannt.
Im frühen 16. Jahrhundert war Raffael der erste Maler, der eine perspektivische Darstellung eines regelmäßigen sechzehneckigen Gebäudes darstellte und zwar in dem Bild Vermählung Mariä.[2]
Architektur
Sechzehneckig strukturierte Bauwerke sind z. B. das englische A La Ronde aus dem 18. Jahrhundert, der niederländische Leuchtturm Huisduinen des späten 19. Jahrhunderts und der ehemalige Panorama-Bau in Leipzig. Die im 19. Jahrhundert ursprünglich als Ausstellungsbau konzipierte Brüsseler Große Moschee wurde im 20. Jahrhundert eine islamische Gebetsstätte. Auch kirchliche Zentralbauten weisen eine solche Struktur auf, wie insbesondere die Kuppel des Petersdoms in Rom, der Aachener Dom in der geometrischen Konzeption seines karolingischenOktogons zusammen mit dem dieses umgebenden Umgang sowie die sechzehneckige Kapelle im Inneren des Magdeburger Doms[3].
↑Veröffentlicht in Nexus III: Architecture and Mathematics, Kim Williams (Hrsg.): Ospedaletto, Pisa: Pacini Editore, 2000, S. 147–156.
↑ottostadt magdeburg: Die sechzehneckige Kapelle. Otto der Große im Magdeburger Dom. Tourist Information Magdeburg, 12. September 2019, abgerufen am 23. September 2019.