Die Schadensversicherungsmathematik ist ein Zweig der Versicherungsmathematik. Während bei Lebensversicherungen nur der Zeitpunkt des Todes zufällig ist, ist bei Schadenversicherungen neben dem Schadenszeitpunkt vor allem auch die Schadenshöhe zufällig und als schwer prognostizierbar anzusehen. Die mathematische Theorie hinter der Schadensversicherungsmathematik heißt Risikotheorie, oft auch Ruintheorie. Sie bedient sich in starkem Maße der Theorie stochastischer Prozesse.
Angenommen ein Versicherungsunternehmen startet zum Zeitpunkt mit einem Anfangskapital , hier Anfangsreserve genannt. In schadensfreien Zeiten steigt diese Reserve durch den (konstant angenommenen) Zufluss der Versicherungsbeiträge (Prämien) an. Zu zufälligen Zeitpunkten treten Schäden mit einer zufälligen Schadenshöhe ein, die von der Versicherungsgesellschaft beglichen werden müssen. Die zum Zeitpunkt vorhandene Kapitalreserve heißt Risikoprozess und wird beschrieben durch
.
Dabei ist die zufällige Anzahl der Schäden in (claim number process). Die Folge nennt man Prozess der Schadens- bzw. Forderungszeitpunkte (claim arrival process). Mit wird die Höhe der Gesamtforderungen in beschrieben (accumulated claim process). Ist z. B. nach vielen großen Schäden negativ geworden, spricht man von Ruin. Naturgemäß möchte die Versicherungsgesellschaft die Ruinwahrscheinlichkeit sehr klein halten.
Modellannahmen und Verteilung des Gesamtschadens
Siehe z. B.[1] Es interessiert die Verteilung des Gesamtschadens , d. h. die Wahrscheinlichkeit . Wenn man annimmt, dass eine Markow-Kette und die Einzelforderungen stochastisch unabhängig voneinander sind mit Verteilungsfunktionen, dann ergibt sich für
.
Dabei ist die -fache Faltung der Verteilungsfunktionen .
Wenn speziell ein homogener Poisson-Prozess mit der Intensität ist, dann ergibt sich für ein zusammengesetzter Poisson-Prozess (Compound Poisson process) mit der Verteilung