Ein ebener Graphen der in der ersten Version genannten Art wird auch als Streckengraph oder als geradlinige Darstellung (des Graphen ) bezeichnet. Unter Verwendung dieser Begriffe lässt sich der Satz auch folgendermaßen formulieren:[2][3]
Die Bedeutung des Satzes von Wagner und Fáry (in der zweiten Version) für den Vierfarbensatz geht aus einer Anmerkung hervor, die der Mathematiker Rudolf Fritsch in seiner Monographie Der Vierfarbensatz dazu macht. Fritsch schreibt, dass der Satz die endgültige Befreiung aus dem Gruselkabinett beliebiger Jordankurven bringt und den Vierfarbensatz aus den Klauen der allgemeinen Topologie löst.[4]
Die Vermutung, dass die Aussage des Satzes von Wagner und Fáry gelte, wurde István Fáry zufolge schon früher von dem ungarischen Mathematiker Tibor Szele geäußert.[4]
Rudolf Fritsch: Der Vierfarbensatz. Geschichte, topologische Grundlagen und Beweisidee. Unter Mitarbeit von Gerda Fritsch. BI Wissenschaftsverlag, Mannheim / Leipzig / Wien / Zürich 1994, ISBN 3-411-15141-2 (MR1270673).
Jonathan L. Gross, Thomas W. Tucker: Topological Graph Theory (= Wiley-Interscience Series in Discrete Mathematics and Optimization). John Wiley & Sons, New York 1987, ISBN 0-471-04926-3 (MR0898434).
Klaus Wagner: Graphentheorie (= BI-Hochschultaschenbücher. 248/248a). Bibliographisches Institut, Mannheim (u. a.) 1970, ISBN 3-411-00248-4 (MR0282850).
Einzelnachweise und Anmerkungen
↑Nora Hartsfield, Gerhard Ringel: Pearls in Graph Theory. 1990, S. 166–167
↑Rudolf Fritsch: Der Vierfarbensatz. 1994, S. 106 ff., 113–115
↑Rudolf Halin: Graphentheorie II. 1981, S. 9 ff., 14–15