Der reduktive Citratzyklus (auch reduktiver Zitratzyklus, reduktiver Zitronensäurezyklus, reduktiver Tricarbonsäurezyklus bzw. reduktiver Krebs-Zyklus) ist ein zyklischer Reaktionsweg, bei dem die Kohlenstoffdioxid (CO2)-Fixierung (Kohlenstoffdioxid-Assimilation) durch rückläufige Schritte des Citratzyklus erfolgt. Durch diese Umkehr der Schritte des Citratzyklus wird er auch als reverser Citratzyklus bezeichnet. Der Zyklus wurde 1966 durch die Arbeiten von Mike C. Evans, Bob B. Buchanan und Daniel I. Arnon entdeckt.[1]
Der reduktive Citratzyklus wurde in verschiedenen mikroaeroben und obligat anaeroben Mikroorganismen nachgewiesen. Er wurde bei Grünen Schwefelbakterien sowie bei Grünen Nichtschwefelbakterien identifiziert.[2] Ursprünglich wurde er 1966 im Grünen Schwefelbakterium Chlorobium limicola entdeckt. Es wird vermutet, dass auch das tiefabzweigende thermophile Bacterium Aquifex aeolicus über den reduktiven Citratzyklus CO2 fixiert.[3]
Es wurde früher vorgeschlagen, dass auch Archaeen (Thermoproteus neutrophilus) über diesen Stoffwechselweg Kohlenstoffdioxid fixieren können.[4] Dies wurde indes durch neuere Untersuchungsergebnisse widerlegt.[5]
Biochemie
Der reduktive Citratzyklus stellt die Umkehrung
des (oxidativen) Citratzyklus dar. Die meisten Enzyme des Citratzyklus werden auch bei diesem Stoffwechselweg verwendet – entgegen dessen Richtung. Im oxidativen Citratzyklus gibt es aber drei irreversible Schritte, die im reduktiven Citratzyklus durch drei spezielle Enzyme umgangen werden:
Im ox. Citratzyklus kondensiert Acetyl-CoA mit Oxalacetat, was die Citrat-Synthase katalysiert. Im reduktiven Citratzyklus wird diese Reaktion durch eine ATP-Citrat-Lyase umgekehrt, wodurch Citrat in Acetyl-CoA und Oxalacetat gespalten wird. Dadurch schließt sich der Kreis. Für diese Reaktion wird ATP benötigt.
In der Gesamtbilanz werden für die Fixierung zweier Moleküle CO2 zu Acetyl-CoA acht Reduktionsäquivalente (in Form von NAD(P)H und red. Ferredoxin) und zwei Moleküle ATP benötigt:
Für die Umkehrung des Citratzyklus wird also ein Molekül ATP zusätzlich benötigt, da im oxidativen Citratzyklus acht Reduktionsäquivalente und ein Molekül GTP freiwerden:
Biologische Bedeutung
Der reduktive Citratzyklus ermöglicht oben genannten Mikroorganismen die Fixierung von CO2. Acetyl-CoA wird jedoch nicht über den Glyoxylatzyklus assimiliert, sondern durch eine Ferredoxin-abhängige Pyruvat-Synthase zu Pyruvat umgesetzt, dabei wird ein drittes CO2-Molekül fixiert:
Pyruvat kann schließlich im Zuge der Gluconeogenese zu Hexosen metabolisiert und in den Baustoffwechsel eingeschleust werden.
Der Zyklus verbraucht im Vergleich zum Calvin-Zyklus deutlich weniger ATP: bezogen auf die Bildung eines Glycerinaldehyd-3-phosphat verbraucht rTCA 5 ATP, wogegen Organismen mit dem Calvin-Zyklus 9 bis 13 ATP benötigen.[6]
Im Allgemeinen kann er wegen der Sauerstoffempfindlichkeit der involvierten Enzyme nur unter anaeroben bzw. (mikro)aeroben Bedingungen ablaufen.[7], unter letzteren Bedingungen wächst z. B. Hydrogenobacter thermophilus TK-6.
Georg Fuchs (Hrsg.), Hans. G. Schlegel (Autor): Allgemeine Mikrobiologie. 8. Auflage. Thieme Verlag, Stuttgart 2007, ISBN 3-13-444608-1, S. 247 f.
Katharina Munk (Hrsg.): Taschenlehrbuch Biologie: Mikrobiologie. Thieme Verlag, Stuttgart 2008, ISBN 978-3-13-144861-3, S. 410 f.
Michael T. Madigan, John M. Martinko, Jack Parker, Thomas D. Brock: Mikrobiologie. Spektrum Akademischer Verlag, ISBN 3-8274-0566-1, S. 659 f.
Bob B. Buchanan et al.: The Arnon-Buchanan cycle: a retrospective, 1966-2016. In: Photosynthesis Research. Band134, Nr.2, November 2017, S.117–131, doi:10.1007/s11120-017-0429-0, PMID 29019085.
Einzelnachweise
↑MC. Evans et al.: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. In: PNAS, 1966, 55(4), S. 928–934; PMID 5219700, PMC 224252 (freier Volltext)
↑Michael T. Madigan, John M. Martinko, Jack Parker, Thomas D. Brock: Mikrobiologie. Spektrum Akademischer Verlag, ISBN 3-8274-0566-1; S. 659
↑M Guiral, C Aubert, MT Giudici-Orticoni: Hydrogen metabolism in the hyperthermophilic bacterium Aquifex aeolicus. In: Biochem. Soc. Trans. 33. Jahrgang, Pt 1, Februar 2005, S.22–4, doi:10.1042/BST0330022, PMID 15667254 (portlandpress.com).
↑G. Strauss et al: 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. In: Eur J Biochem., 1992, 205(2), S. 853–866; PMID 1572376.
↑W. H. Ramos-Vera, I. A. Berg, G. Fuchs: Autotrophic carbon dioxide assimilation in Thermoproteales revisited. In: Journal of bacteriology, Band 191, Nummer 13, Juli 2009, S. 4286–4297; doi:10.1128/JB.00145-09, PMID 19411323, PMC 2698501 (freier Volltext).
↑IA. Berg et al: Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. In: Microbiology, 2010, 156' (Pt 1), S. 256–269; PMID 19850614; doi:10.1099/mic.0.034298-0