Quasinormierbarer RaumQuasinormierbare Räume bilden eine im mathematischen Teilgebiet der Funktionalanalysis betrachtete Klasse lokalkonvexer Räume. Diese auf A. Grothendieck zurückgehende Begriffsbildung erlaubt eine Charakterisierung von Schwartzräumen. Man findet in der Literatur auch die Bezeichnung quasinormabel. DefinitionEin lokalkonvexer Raum heißt quasinormierbar, falls es zu jeder Nullumgebung eine weitere Nullumgebung gibt, so dass man zu jedem eine beschränkte Menge mit finden kann. Würde diese Bedingung sogar für gelten, so wäre eine beschränkte Nullumgebung und damit der Raum normierbar. Diese Betrachtung rechtfertigt den Namen quasinormierbar. Beispiele
Eine der Charakterisierungen der Schwartz-Räume besteht gerade darin, dass man in obiger Definition die beschränkte Menge sogar endlich wählen kann. Man kann sich nun fragen, welche Bedingung umgekehrt ein quasinormierbarer Raum erfüllen muss, um ein Schwartz-Raum zu sein. Es gilt folgender Satz:
Eigenschaften
Quellen
|
Portal di Ensiklopedia Dunia