Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Synthetisch stellt man Protocatechusäure aus p-Hydroxybenzoesäure dar; man führt diese in m-Chlor-p-hydroxybenzoesäure über und erhitzt letztere mit Ätzkali unter Druck.
Protocatechusäure und schmilzt bei etwa 202–204 °C[2] und zersetzt sich dabei durch Decarboxylierung zu Brenzcatechin und Kohlenstoffdioxid. Ihre wässrige Lösung wird nach Zusatz von Eisenchlorid blaugrün. Diese Farbe schlägt nach Zugabe von wenig Soda oder Ammoniak erst nach violett, dann nach rot um. Protocatechusäure wirkt stark reduzierend.
Die Wirkung von Protocatechusäure auf lebende Zellen ist momentan Gegenstand der Forschung und wird noch kontrovers diskutiert. So wurde gezeigt, dass es ein potentes Antioxidationsmittel mit einer etwa 10-mal stärkeren Wirkung als α-Tocopherol ist.[18] In hohen Dosen jedoch, bei beispielsweise 10 mM, kann es aber auch oxidativen Stress in Zellkulturen induzieren.[19]
Gegenüber Krebszellen zeigt Protocatechusäure verschiedene Effekte. In menschlichen Magenkrebszellen (Zellen eines Magenadenokarzinoms) und andere Tumorzellen des Verdauungstraktes induziert es die Apoptose und wirkt daher im Sinne eines Krebsmittels.[5] Es liegen aber auch Studiendaten vor, die auf einen gegenteiligen Effekt von Protocatechusäure hinweisen. So induziert es die Zellteilung in neuralen Stammzellen und blockiert dort die Apoptose.[20] Auch in Hautkrebszellen der Maus wurde dies beobachtet. Wenn dort chemisch durch 12-O-Tetradecanoylphorbol-13-acetat Krebszellen induziert wurden, konnte Protocatechusäure die Tumorbildung sogar noch verstärken.[18] Wenn man in vitromaligne Zelllinien der menschlichen Unterkieferspeicheldrüse erzeugt, konnte Protocatechusäure diese Krebszellen nicht abtöten.[19]
Literatur
Paul Karrer: Lehrbuch der organischen Chemie. 10. Auflage. Georg Thieme, Stuttgart 1948, S. 569.
↑ abcdH. H. Lin, J. H. Chen, C. C. Huang, C. J. Wang: Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. In: Int J Cancer. Band120, Nr.11, Juni 2007, S.2306–2316, doi:10.1002/ijc.22571, PMID 17304508.
↑Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. In: Food Chemistry. Band143, 15. Januar 2014, S.48–53, doi:10.1016/j.foodchem.2013.07.097.
↑Georgios I. Panoutsopoulos, Christine Beedham: Enzymatic Oxidation of Vanillin, Isovanillin and Protocatechuic Aldehyde with Freshly Prepared Guinea Pig Liver Slices. In: Cell Physiol Biochem. Band 15, Nr. 1–4, 2005, S. 89–98. PMID 15665519; (PDF)
↑ abJ. Stenhouse: Action of Bromine on Protocatechuic Acid, Gallic Acid and Tannion. In: The chemical news. Band 29, 1874, S. 95 (eingeschränkte Vorschau in der Google-Buchsuche).
↑F. Ma, X. Gong, X. Zhou, Y. Zhao, M. Li: An UHPLC-MS/MS method for simultaneous quantification of gallic acid and protocatechuic acid in rat plasma after oral administration of Polygonum capitatum extract and its application to pharmacokinetics. In: J Ethnopharmacol. Band 162, 13. Mar 2015, S. 377–383. PMID 25557034.
↑Y. Tao, X. Xu, J. Yan, B. Cai: A sensitive UPLC-MS/MS method for simultaneous determination of polyphenols in rat plasma: Application to a pharmacokinetic study of dispensing granules and standard decoction of Cinnamomum cassia twigs. In: Biomed Chromatogr. Band 33, Nr. 7, Jul 2019, S. e4534. PMID 30874318.
↑A. Balkrishna, M. Tomer, M. Joshi, S. Gujral, R. Kumar Mishra, J. Srivastava, A. Varshney: Standardization and validation of phytometabolites by UHPLC and high-performance thin layer chromatography for rapid quality assessment of ancient ayurvedic medicine. In: Mahayograj Guggul. J Sep Sci. Band 45, Nr. 10, Mai 2022, S. 1616–1635. PMID 35152549.
↑ abY. Nakamura et al.: A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. In: Carcinogenesis. Band21, Nr.10, Oktober 2000, S.1899–1907, doi:10.1093/carcin/21.10.1899, PMID 11023549.
↑ abH. Babich, A. Sedletcaia, B. Kenigsberg: In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress. In: Pharmacol Toxicol. Band91, Nr.5, November 2002, S.245–253, doi:10.1034/j.1600-0773.2002.910505.x, PMID 12570031.