Rieffel studierte an der Harvard University mit dem Bachelor-Abschluss 1959 und wurde 1963 bei Richard Kadison an der Columbia University promoviert (A characterization of commutative group algebras and measure algebras).[2] Danach war er ab 1963 Lecturer an der Universität Berkeley, wurde Assistant Professor, 1968 Associate Professor und 1973 Professor.
Er entwickelte in den 1970er Jahren die Theorie der Morita Äquivalenz von C*-Algebren und führte die starke Deformationsquantisierung ein.[3]
Gromov-Hausdorff distance for quantum metric spaces/matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, American Mathematical Society 2004, Arxiv
Deformation quantization for actions of , American Mathematical Society 1993
Deformation quantization and operator algebras, Proc. Symposium Pure Mathematics, Band 51, 1990, S. 411–423
Quantization and C* algebras, Contemporary Mathematics, Band 167, 1994, S. 67–97
Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemporary Mathematics, Band 105, 1990, S. 191–211
mit Alain Connes Yang-Mills for non-commutative 2-tori, Contemporary Mathematics, Band 62, 1987, S. 237–266
Herausgeber mit Lewis Coburn Perspectives on quantization (Proceedings of the 1996 AMS-IMS-SIAM Joint Summer Research Conference, 7.–11. Juli 1996, Mt. Holyoke College), American Mathematical Society 1998
Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51–96
Induced representations of C*-algebras, Bull. Amer. Math. Soc. 78 (1972), 606–609 und Advances in Mathematics, Band 13, 1974, S. 176–257
Morita equivalence for operator algebras, Proceedings of Symposia in Pure Mathematics 38 (1982) Part I, 285-298
Application of Strong Morita Equivalence to transformation groups of C* algebras, Proceedings of Symposia in Pure Mathematics 38 (1982) Part I, 299-309
Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in analysis, Advances in Mathematics Suppl, 4, Academic Press 1979, S. 43–82
mit Albert S. SchwarzMorita equivalence of multidimensional noncommutative tori, Internat. J. Math., Band 10, 1999, S. 289–299, Arxiv
A global view of equivariant vector bundles and Dirac operators on some compact homogeneous spaces, in Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, Contemporary Mathematics, Band 449, 2008, S. 399–415
Integrable and proper actions on C*-algebras, and square-integrable representations of groups, Expositiones Mathematicae, Band 22, 2004, S. 1–53, Arxiv
Compact quantum metric spaces, in Operator algebras, quantization, and noncommutative geometry, Contemporary Mathematics, Band 365, 2004, S. 315–330, Arxiv