Schnitte von Familien von Konvexen Kegeln sind wieder Konvexe Kegel. Somit bilden die konvexen Kegel ein Hüllensystem.
Die konische Hülle (manchmal auch positive Hülle genannt) weist jeder Menge den kleinsten konvexen Kegel zu, der diese Menge enthält. Somit ist die konische Hülle der Hüllenoperator zu dem Hüllensystem der konvexen Kegel.
Jeder konvexe Kegel definiert eine Ordnungsrelation auf dem Vektorraum, in dem er sich befindet. Der konvexe Kegel wird dann als Ordnungskegel aufgefasst.
Die Konvexität von Kegeln lässt sich durch folgende äquivalente geometrische Definition beschreiben: Ein Kegel ist genau dann ein konvexer Kegel, wenn der Durchschnitt mit jedem Großkreis der Einheitssphärezusammenhängend ist.
Weitere Begriffe
Ein Kegel heißt ein polyedrischer Kegel, wenn es eine Matrix gibt, so dass
Ein Kegel heißt homogen, wenn die Automorphismengruppe transitiv auf wirkt.
Er heißt symmetrisch, wenn es zu jedem eine Involution mit als einzigem Fixpunkt gibt. Symmetrische konvexe Kegel sind stets homogen.
Ein Kegel heißt reduzibel wenn er von der Form
mit ist, irreduzibel sonst.
Der zu duale Kegel ist definiert als
.
Auch diese Definition lässt sich analog für Vektorräume mit Skalarprodukt über einem angeordneten Körper formulieren.
Ein Kegel heißt selbstdual, wenn ist.
Charakterisierung symmetrischer konvexer Kegel: Ein konvexer Kegel ist genau dann symmetrisch, wenn er offen, regulär, homogen und selbstdual ist.
Satz von Koecher-Vinberg
Der positive Kegel einer Jordan-Algebra ist die Menge der Elemente mit positivem Spektrum. Eine Jordan-Algebra heißt formal reell, wenn sich nicht als nichttriviale Summe von Quadraten darstellen lässt. In einer formal reellen Jordan-Algebra gehört ein Element genau dann zum positiven Kegel, wenn es ein Quadrat ist.
Der Satz von Koecher-Vinberg besagt, dass die Konstruktion des positiven Kegels eine Bijektion zwischen formal reellen Jordan-Algebren und symmetrischen konvexen Kegeln herstellt.
Symmetrische konvexe Kegel werden deshalb auch als Positivitäts-Gebiet (engl.: domain of positivity) bezeichnet.
der Kegel der positiven hermiteschen komplexen -Matrizen für
der Kegel der positiven hermiteschen quaternionischen -Matrizen für
und für der Kegel mit .
Literatur
Benoist, Yves: A survey on divisible convex sets. Geometry, analysis and topology of discrete groups, 1–18, Adv. Lect. Math. (ALM), 6, Int. Press, Somerville, MA 2008. pdf
Koecher, Max: The Minnesota notes on Jordan algebras and their applications. Edited, annotated and with a preface by Aloys Krieg and Sebastian Walcher. Lecture Notes in Mathematics, 1710. Springer-Verlag, Berlin 1999, ISBN 3-540-66360-6.