Gyrolith
Gyrolith ist ein selten vorkommendes Mineral aus der Mineralklasse der „Silikate und Germanate“. Es kristallisiert im triklinen Kristallsystem mit der Zusammensetzung NaCa16[(OH)8|(Si,Al)24O60]·14H2O[3], ist also chemisch gesehen ein wasserhaltiges Natrium-Calcium-Silikat. Strukturell gehört er zu den Schichtsilikaten. Gyrolith bildet überwiegend radialstrahlige bis kugelige Mineral-Aggregate, die aus pseudohexagonalen, faserigen bis tafeligen Kristallen bestehen. In reiner Form ist das Mineral farblos und durchsichtig. Durch vielfache Lichtbrechung aufgrund von Gitterbaufehlern oder polykristalliner Ausbildung kann es aber auch weiß erscheinen und durch Fremdbeimengungen eine grünliche, gelbliche oder bräunliche Farbe annehmen, wobei die Transparenz entsprechend abnimmt. Etymologie und GeschichteErstmals entdeckt wurde Gyrolith an der bekannten Felsnadel „The Old Man of Storr“ (kurz: The Storr oder Storr, etwa 9 Meilen von Portree) auf der schottischen „Isle of Skye“ und beschrieben 1851 durch Thomas Anderson, der das Mineral aufgrund seiner charakteristischen Kristallform nach dem griechischen Wort γύρος für Kreis, Kreisel oder Drehung benannte. KlassifikationIn der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Gyrolith zur Abteilung der „Schichtsilikate (Phyllosilikate)“, wo er zusammen mit Armstrongit, Fedorit, Lalondeit, Martinit, Minehillit, Orlymanit, Reyerit, Truscottit, Tungusit und Zeophyllit die „Reyeritgruppe“ mit der System-Nr. VIII/H.34 bildete. Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Gyrolith ebenfalls in die Abteilung der „Schichtsilikate“ ein. Diese ist allerdings weiter unterteilt nach der Schichtstruktur, so dass das Mineral entsprechend seinem Aufbau in der Unterabteilung „Einfache tetraedrische Netze aus 6-gliedrigen Ringen, verbunden über oktaedrische Netze oder Bänder“ zu finden ist, wo es nur noch zusammen mit Tungusit die unbenannte Gruppe 9.EE.30 bildet. Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Gyrolith in die Klasse der „Silikate und Germanate“ und dort in die Abteilung der „Schichtsilikate mit kondensierten tetraedrischen Schichten“ ein. Hier ist er als einziges Mitglied in der „Reyeritgruppe (Gyrolith-Untergruppe)“ mit der System-Nr. 73.02.02c innerhalb der Unterabteilung „Schichtsilikate: Kondensierte Tetraederschichten mit doppelten und einfachen Lagen“ zu finden. Bildung und FundorteGyrolith bildet sich durch Materialaustausch in Nebengesteinen, Drusen, Mandelsteinen und als Rissfüllung in Basalten, kann aber auch in hydrothermal umgewandelten Rhyolithen und Sedimenten sowie in einigen Erz-Lagerstätten entstehen. Als Begleitminerale treten unter anderem Apophyllit, Calcit, Laumontit, Okenit, Stilbit, Thomsonit, Tobermorit und Xonotlit auf. Als seltene Mineralbildung konnte Gyrolith nur an wenigen Fundorten nachgewiesen werden, wobei bisher (Stand: 2013) rund 100 Fundorte als bekannt gelten.[6] Neben seiner Typlokalität Storr wurde das Mineral im Vereinigten Königreich noch an mehreren Orten auf der Isle of Skye und der Isle of Mull in Schottland sowie in der historischen Grafschaft Antrim in Nordirland entdeckt. In Deutschland kennt man Gyrolith bisher unter anderem vom Zeilberg in Bayern, aus den Steinbrüchen „Hochberg“ und „Gaulsberg“ im hessischen Vogelsberg, vom Bramburg bei Adelebsen in Niedersachsen sowie vom Arensberg und Ettringer Bellerberg (Steinbruch „Caspar“ bei Ettringen) in Rheinland-Pfalz. Weitere Fundorte liegen unter anderem in Australien, China, Costa Rica, Dänemark, Frankreich und Französisch-Polynesien, Grönland, Indien, Island, Israel, Italien, Japan, Kanada, Norwegen, Portugal, Rumänien, Russland, der Slowakei, Tschechien, der Ukraine und in den Vereinigten Staaten von Amerika (USA).[7] KristallstrukturGyrolith kristallisiert triklin in der Raumgruppe P1 (Raumgruppen-Nr. 2) mit den Gitterparametern a = 9,74 Å; b = 9,74 Å; c = 22,40 Å; α = 95,7°; β = 91,3° und γ = 120,0° sowie eine Formeleinheit pro Elementarzelle.[3] Siehe auchLiteratur
WeblinksCommons: Gyrolite – Sammlung von Bildern, Videos und Audiodateien
Einzelnachweise
|