Gilbreaths VermutungGilbreaths Vermutung ist eine unbewiesene zahlentheoretische Behauptung, die die Primzahlen betrifft. Sie wird Norman L. Gilbreath (* 1936) für das Jahr 1958 zugeschrieben,[1] er soll sie beim Kritzeln auf einer Serviette entdeckt haben. Die Vermutung wurde aber bereits 1878 von François Proth[2] zusammen mit einem angeblichen Beweis, der sich später als fehlerhaft erwies, veröffentlicht. Man schreibt in einer ersten Zeile die Folge der Primzahlen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, … Dann berechnet man die Absolutwerte der Differenzen zwischen aufeinander folgenden Folgegliedern und notiert so die zweite Zeile. Genauso bildet man die dritte und alle folgenden Zeilen:
Gilbreaths Vermutung lautet nun, dass der erste Wert jeder Zeile außer der ersten Zeile 1 beträgt. Andrew Odlyzko lieferte eine Überprüfung für die ersten ca. Zeilen.[3][4] Weblinks
Einzelnachweise
|
Portal di Ensiklopedia Dunia