Der cauchysche Integralsatz (nach Augustin Louis Cauchy) ist einer der wichtigsten Sätze der Funktionentheorie. Er handelt von Kurvenintegralen für holomorphe (auf einer offenen Menge komplex-differenzierbare) Funktionen. Im Kern besagt er, dass zwei dieselben Punkte verbindende Wege das gleiche Wegintegral besitzen, falls die Funktion überall zwischen den zwei Wegen holomorph ist. Der Satz gewinnt seine Bedeutung unter anderem daraus, dass man ihn zum Beweis der cauchyschen Integralformel und des Residuensatzes benutzt.
Die erste Formulierung des Satzes stammt von 1814, als Cauchy ihn für rechteckige Gebiete bewies. Dies verallgemeinerte er in den nächsten Jahren, allerdings setzte er dabei den jordanschen Kurvensatz als selbstverständlich voraus. Moderne Beweise kommen durch das Lemma von Goursat ohne diese tiefgreifende Aussage aus der Topologie aus.
Der Satz
Der Integralsatz wurde in zahlreichen Versionen formuliert.
Cauchyscher Integralsatz für Elementargebiete
Sei
ein Elementargebiet, also ein Gebiet, auf dem jede holomorphe Funktion
eine Stammfunktion besitzt. Sterngebiete sind beispielsweise Elementargebiete. Der Cauchysche Integralsatz besagt nun, dass
![{\displaystyle \oint \limits _{\gamma }f(z)\,\mathrm {d} z=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5480f595aa7e89bcf96f5e3ad7c53630aafc70c8)
für jede geschlossene Kurve
(wobei
und
). Für das Integralzeichen mit Kreis siehe Notation für Kurvenintegrale von geschlossenen Kurven.
Ist
kein Elementargebiet, so ist die Aussage falsch. Zum Beispiel ist
auf dem Gebiet
holomorph, dennoch verschwindet
nicht über jede geschlossene Kurve. Beispielsweise gilt
![{\displaystyle \;\oint \limits _{\partial U_{r}(0)}{\frac {1}{z}}\,\mathrm {d} z=2\pi \mathrm {i} \neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33ca6337a11f01cd67f3dfdd09b9a4afcea6fafa)
für die einfach durchlaufene Randkurve einer Kreisscheibe um
mit positivem Radius
.
Cauchyscher Integralsatz (Homotopie-Version)
Ist
offen und sind
zwei zueinander homotope Kurven in
, dann ist
![{\displaystyle \int \limits _{\alpha }f(z)\,dz=\int \limits _{\beta }f(z)\,dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/510523df0bf06860f9f4e1548d92d451515fcbba)
für jede holomorphe Funktion
.
Ist
ein einfach zusammenhängendes Gebiet, dann verschwindet das Integral nach der Homotopie-Version für jede geschlossene Kurve, d. h.
ist ein Elementargebiet.
Bei erneuter Betrachtung des obigen Beispiels bemerkt man, dass
nicht einfach zusammenhängend ist.
Cauchyscher Integralsatz (Homologie-Version)
Ist
ein Gebiet und
ein Zyklus in
, dann verschwindet
![{\displaystyle \int \limits _{\Gamma }f(z)\,dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3074b5d78c3d36366bb72a782ad279309848e874)
genau dann für jede holomorphe Funktion
, wenn
nullhomolog in
ist.
Isolierte Singularitäten
Windungszahl des Integrationsweges
Es sei
ein Gebiet,
ein innerer Punkt und
holomorph. Sei
eine punktierte Umgebung, auf der
holomorph ist. Sei ferner
eine vollständig in
verlaufende geschlossene Kurve, die
genau einmal positiv orientiert umläuft, d. h. für die Umlaufzahl gilt
(insbesondere liegt
nicht auf
). Mit dem Integralsatz gilt nun
![{\displaystyle \oint \limits _{\gamma }f(z)\,dz=\oint \limits _{\partial U}f(z)\,dz.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5255c674e3f7d3570ea223bda264ad41692fe0ee)
Durch Verallgemeinerung auf beliebige Umlaufzahlen von
erhält man
![{\displaystyle \oint \limits _{\gamma }f(z)\,dz=\operatorname {ind} _{\gamma }(a)\oint \limits _{\partial U}f(z)\,dz.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/297f3d2a7b650cbcbba90c54d6d22c6999042119)
Mithilfe der Definition des Residuums ergibt sich sogar
![{\displaystyle {\frac {1}{2\pi \mathrm {i} }}\oint _{\gamma }f(z)\,dz=\operatorname {ind} _{\gamma }(a)\operatorname {Res} _{a}f(z).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a340230e644bd307b1a7727a110d195819bf7bf7)
Der Residuensatz ist eine Verallgemeinerung dieser Vorgehensweise auf mehrere isolierte Singularitäten und auf Zyklen.
Beispiel
Es wird im Folgenden das Integral
mit
bestimmt. Wähle als Integrationsweg
einen Kreis mit Radius
um
, also
![{\displaystyle z=\gamma (t)=a+re^{2\pi \mathrm {i} t}\quad \Rightarrow \quad \mathrm {d} z={\frac {\partial \gamma }{\partial t}}\mathrm {d} t=2\pi ire^{2\pi \mathrm {i} t}\mathrm {d} t}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68c30b6b9f038b0e9df32d398d5cef64d8fef74d)
Daraus folgt:
![{\displaystyle {\begin{aligned}\;\oint \limits _{\partial U_{r}(a)}{\frac {1}{(z-a)^{n}}}\mathrm {d} z&=\int \limits _{0}^{1}{\frac {2\pi \mathrm {i} re^{2\pi \mathrm {i} t}}{r^{n}e^{2\pi n\mathrm {i} t}}}\mathrm {d} t=2\pi \mathrm {i} r^{1-n}\int \limits _{0}^{1}e^{2\pi \mathrm {i} t(1-n)}\mathrm {d} t={\begin{cases}2\pi \mathrm {i} [t]_{0}^{1}&{\mbox{für}}\ n=1\\{\frac {r^{1-n}}{1-n}}[e^{2\pi \mathrm {i} t(1-n)}]_{0}^{1}&{\mbox{für}}\ n\neq 1\end{cases}}\\&={\begin{cases}2\pi \mathrm {i} &{\mbox{für}}\ n=1\\0&{\mbox{für}}\ n\neq 1\end{cases}}=2\pi \mathrm {i} \delta _{n,1}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09d3be86fdbb5691fcf74eeb987c27e47621115b)
Da man jede Funktion
, die auf einem Kreisring um
holomorph ist, in eine Laurent-Reihe entwickeln kann,
, ergibt sich bei der Integration um
:
![{\displaystyle \;\oint \limits _{\partial U(a)}f(z)\mathrm {d} z=\oint \limits _{\partial U(a)}\sum _{n=-\infty }^{\infty }c_{n}(z-a)^{n}\mathrm {d} z=\sum _{n=-\infty }^{\infty }c_{n}\oint \limits _{\partial U(a)}(z-a)^{n}\mathrm {d} z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9faa91688dcc9ced0aaa23caa79860639e28df4)
Nun lässt sich obiges Ergebnis anwenden:
,
wobei der Entwicklungskoeffizient
Residuum genannt wird.
Herleitung
Folgende Herleitung, die allerdings die stetige komplexe Differenzierbarkeit voraussetzt,
führt das komplexe Integral auf reelle zweidimensionale Integrale zurück.
Sei
mit
und
mit
. Dann gilt für das Integral entlang der Kurve
in der komplexen Ebene, bzw. für das äquivalente Linienintegral entlang der Kurve
![{\displaystyle C(x,y)={\begin{pmatrix}\Re (\gamma (z))\\\Im (\gamma (z))\end{pmatrix}}={\begin{pmatrix}\Re (\gamma (x,y))\\\Im (\gamma (x,y))\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b01fd45d8a48bb86b6b8eea5b1a4811665bcf6)
in der reellen Ebene
![{\displaystyle {\begin{aligned}{\underset {\gamma \subset \mathbb {C} }{\int }}f(z)\,dz&={\underset {C\subset \mathbb {R} ^{2}}{\int }}f(x,y)\,(dx+idy)={\underset {C\subset \mathbb {R} ^{2}}{\int }}{\begin{pmatrix}f(x,y)\\if(x,y)\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\end{pmatrix}}\\&={\underset {C\subset \mathbb {R} ^{2}}{\int }}{\begin{pmatrix}u(x,y)\\-v(x,y)\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\end{pmatrix}}+i{\underset {C\subset \mathbb {R} ^{2}}{\int }}{\begin{pmatrix}v(x,y)\\u(x,y)\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\end{pmatrix}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da6181c014ad84fc1e37330c2ff73614f1fec6d9)
Damit wurde das komplexe Kurvenintegral durch zwei reelle Kurvenintegrale ausgedrückt.
Für eine geschlossene Kurve
, die ein einfach zusammenhängendes Gebiet S berandet, lässt sich der Integralsatz von Gauß (hier wird die Stetigkeit der partiellen Ableitungen verwendet) anwenden
![{\displaystyle {\begin{aligned}{\underset {\gamma \subset \mathbb {C} }{\oint }}f(z)\,dz&={\underset {S\subset \mathbb {R} ^{2}}{\int }}{\begin{pmatrix}\partial _{x}\\\partial _{y}\end{pmatrix}}\cdot {\begin{pmatrix}u\\-v\end{pmatrix}}dxdy+i{\underset {S\subset \mathbb {R} ^{2}}{\int }}{\begin{pmatrix}\partial _{x}\\\partial _{y}\end{pmatrix}}\cdot {\begin{pmatrix}v\\u\end{pmatrix}}dxdy\\&={\underset {S\subset \mathbb {R} ^{2}}{\int }}\left\{\partial _{x}u-\partial _{y}v\right\}dxdy+i{\underset {S\subset \mathbb {R} ^{2}}{\int }}\left\{\partial _{x}v+\partial _{y}u\right\}dxdy\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65b0d923deba84d81956f9d47f008b822c92c820)
bzw. alternativ der Satz von Stokes
![{\displaystyle {\begin{aligned}{\underset {\gamma \subset \mathbb {C} }{\oint }}f(z)\,dz&={\underset {S\subset \mathbb {R} ^{2}}{\int }}\left[{\begin{pmatrix}\partial _{x}\\\partial _{y}\\0\end{pmatrix}}\times {\begin{pmatrix}u\\-v\\0\end{pmatrix}}\right]_{3}dxdy+i{\underset {S\subset \mathbb {R} ^{2}}{\int }}\left[{\begin{pmatrix}\partial _{x}\\\partial _{y}\\0\end{pmatrix}}\times {\begin{pmatrix}v\\u\\0\end{pmatrix}}\right]_{3}dxdy\\&={\underset {S\subset \mathbb {R} ^{2}}{\int }}\left\{-\partial _{x}v-\partial _{y}u\right\}dxdy+i{\underset {S\subset \mathbb {R} ^{2}}{\int }}\left\{\partial _{x}u-\partial _{y}v\right\}dxdy\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e41b52f830d82198812d73acfb8b6e77333233ff)
Ist die Funktion
in S komplex differenzierbar, müssen dort die Cauchy-Riemannschen Differentialgleichungen
und ![{\displaystyle \partial _{x}v=-\partial _{y}u}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a674c1a4cb0e5c413a0810d2911988548ee67f7)
gelten, sodass die obigen Integranden (egal ob in der Gauß- oder Stokes-Version) verschwinden:
![{\displaystyle {\underset {\gamma }{\oint }}f(z)\,dz=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd6160a216772e9a25adec0eadf8601385cbf593)
Somit ist der cauchysche Integralsatz für holomorphe Funktionen auf einfach zusammenhängenden Gebieten bewiesen.
Cauchyscher Integralsatz mit Wirtinger-Kalkül und Satz von Stokes
Der cauchysche Integralsatz ergibt sich als leichte Folgerung aus dem Satz von Stokes, wenn man den Wirtinger-Kalkül zum Einsatz bringt[1]. Dabei wird zum Beweis des Integralsatzes die Berechnung des Kurvenintegrals verstanden als Integration der komplexwertigen Differentialform
![{\displaystyle \omega =f(z)dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd995928bbf9efb46239090b464ac01c1e60ab34)
über die geschlossene Kurve
, die das einfach zusammenhängende und von
berandete Gebiet
umläuft.
Der Wirtinger-Kalkül besagt nun, dass das Differential
die Darstellung
![{\displaystyle df={\frac {\partial f}{\partial z}}dz+{\frac {\partial f}{\partial {\bar {z}}}}{d{\bar {z}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/358069c37b982b3b15c31b9705c49861ed42d9f7)
hat, woraus unmittelbar
![{\displaystyle d{\omega }=df\wedge dz={{\frac {\partial f}{\partial z}}dz}\wedge dz+{{\frac {\partial f}{\partial {\bar {z}}}}{d{\bar {z}}}}\wedge dz}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df72f3d01f55929e59add7db02dbc50a74a2f97b)
folgt.[2]
Nun ist zunächst grundsätzlich
![{\displaystyle dz\wedge dz=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a7112f22979985ee46d271710bd081128d56dbc3)
Weiterhin bedeutet die vorausgesetzte Holomorphiebedingung für
nach dem Wirtinger-Kalkül nichts weiter als
,
was unmittelbar
![{\displaystyle {{\frac {\partial f}{\partial {\bar {z}}}}{d{\bar {z}}}}\wedge dz=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/feb80170707089f306e29b39812683ebe20675b5)
nach sich zieht.[3]
Insgesamt ergibt sich also:
![{\displaystyle d{\omega }=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6741ba4b5ae575ea58e917dd5465a0c5848bb08)
und damit schließlich mittels Satz von Stokes:
![{\displaystyle \int \limits _{C}f(z)dz=\int \limits _{\partial S}\omega =\int \limits _{S}\mathrm {d} \omega =\int \limits _{S}\mathrm {0} =0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/980a5945a7a2573cdd8941a905336a1959c1b43f)
Anmerkung
Es lässt sich mit Hilfe des Integrallemmas von Goursat zeigen, dass sich aus der komplexen Differenzierbarkeit allein – also ohne die zusätzliche Annahme der Stetigkeit der Ableitungen! – bereits der cauchysche Integralsatz und dann auch die Existenz aller höheren Ableitungen ergibt. Dieser Zugang zum cauchyschen Integralsatz umgeht den Satz von Stokes und ist unter didaktischen Gesichtspunkten vorzuziehen.
Folgerungen
Der Cauchysche Integralsatz ermöglicht unmittelbar Beweise des Fundamentalsatzes der Algebra, welcher besagt, dass jedes komplexe Polynom über
in Linearfaktoren zerfällt, d. h., dass der Körper der komplexen Zahlen algebraisch abgeschlossen ist.
Literatur
- Kurt Endl, Wolfgang Luh: Analysis. Band 3: Funktionentheorie, Differentialgleichungen. 6. überarbeitete Auflage. Aula-Verlag, Wiesbaden 1987, ISBN 3-89104-456-9, S. 143, Satz 4.7.3
- Wolfgang Fischer, Ingo Lieb: Funktionentheorie. 7. verbesserte Auflage. Vieweg, Braunschweig u. a. 1994, ISBN 3-528-67247-1, S. 57, Kapitel 3, Satz 1.4 (Vieweg-Studium. Aufbaukurs Mathematik 47).
- Günter Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure. 2. Auflage, 1. korrigierter Nachdruck. Spektrum Akademischer Verlag, München u. a. 2009, ISBN 978-3-8274-1688-9.
- Klaus Jänich: Einführung in die Funktionentheorie. 2. Auflage. Springer-Verlag, Berlin (u. a.) 1980, ISBN 3-540-10032-6.
Einzelnachweise
- ↑ Klaus Jänich: Einführung in die Funktionentheorie. 2. Auflage. Springer-Verlag, Berlin (u. a.) 1980, ISBN 3-540-10032-6, S. 19–20.
- ↑ Klaus Jänich: Einführung in die Funktionentheorie. 2. Auflage. Springer-Verlag, Berlin (u. a.) 1980, ISBN 3-540-10032-6, S. 15, 20.
- ↑ Klaus Jänich: Einführung in die Funktionentheorie. 2. Auflage. Springer-Verlag, Berlin (u. a.) 1980, ISBN 3-540-10032-6, S. 16, 20.