In der Rechentechnik, vornehmlich in der digitalen Signalverarbeitung, benötigt man schnelle Verfahren für die Berechnung von bspw. trigonometrischen Funktionen. Herkömmliche Reihenentwicklungen wie z. B. die Taylorreihe zeigen oft nur mittelmäßige (d. h. langsame, oder gar von den Argumenten abhängige) Konvergenz und schlechte numerische Stabilität. Eine Reihenentwicklung besteht außerdem hauptsächlich aus einer Summe von Produkten, die nur aufwendig zu berechnen sind.
Geschichtliche Entwicklung
Der CORDIC-Algorithmus wurde 1959 von Jack E. Volder präsentiert. In der ursprünglichen Version war es damit möglich, trigonometrische Funktionen wie Sinus, Cosinus und Tangens sowie die Multiplikation und Division von Zahlen allein durch die in digitalen Schaltungen einfach realisierbaren Additionen und Schiebeoperationen (engl. shift-and-add operations) zu bilden. Schiebeoperationen zur Zahlenbasis 2 sind in digitalen Schaltungen sehr leicht durch entsprechende Verschaltung realisierbar.
Volders Motivation war der Ersatz der üblichen und fehleranfälligen analogen Navigationsrechner in Convair-B-58-Bombern durch digitale Rechner zur genauen Positionsbestimmung. Die Anforderung war die Positionsberechnung der mit Überschallgeschwindigkeit fliegenden Bomber in Echtzeit über einer vereinfacht als kugelförmig angenommenen Erdoberfläche.
Mitte der 1960er Jahre wurde der CORDIC-Algorithmus auch in zivilen Anwendungen eingesetzt. Vorläufer der heutigen Taschenrechner wie der Tischrechner 9100 von Hewlett-Packard aus dem Jahr 1968 setzten ihn zur Berechnung der trigonometrischen Funktionen ein.
Im Jahr 1971 wurde der CORDIC-Algorithmus von J. S. Walther auf die heute übliche Form erweitert und damit auch die effiziente Berechnung von Logarithmen, der Exponentialfunktion und der Quadratwurzel in digitalen Schaltungen möglich.
Anwendungsbeispiele
CORDIC-Algorithmen werden zur Berechnung der wichtigsten Elementarfunktionen in Mikrocontroller-Rechenwerken wie Taschenrechnern eingesetzt. So findet sich auch in arithmetischen x87-Koprozessoren von Intel der CORDIC-Algorithmus zur Berechnung mathematischer Operationen. Weitere Anwendungsbeispiele liegen in der Nachrichtenübertragung. Damit lassen sich beispielsweise effizient Betrag und Phase eines komplexen Signals bestimmen.
Da Multiplizierwerke vor allem in digitalen Schaltungen umfangreich und damit teuer zu realisieren sind, wird CORDIC oft genau da eingesetzt, wo Multiplizierer nicht effizient verfügbar sind. Dies umfasst vor allem den Bereich der digitalen Schaltungstechniken wie FPGAs oder ASICs.
CORDIC ist zwar nicht der schnellste Algorithmus, wird aber wegen seiner Einfachheit und Vielseitigkeit oft eingesetzt.
Funktionsweise
CORDIC kann man im , aber auch nur in der zweidimensionalen Ebene betrachten. Im Folgenden umfasst die Beschreibung den einfacheren, zweidimensionalen Fall.
Dreht man ein Koordinatensystem um den Winkel , erscheint der Vektor um den Winkel gedreht; sein Endpunkt liegt im neuen System bei und .
D. h., um auf den eigentlichen Funktionswert zu kommen, muss der Einheitsvektor um gedreht werden. Dies lässt sich leichter bewerkstelligen, wenn innerhalb der Transformationsmatrix nur noch eine Abhängigkeit von einer Winkelfunktion, z. B. besteht:
Die Drehung um wird trickreich realisiert als Linearkombination von Teildrehungen um geschickt gewählte Teilwinkel .
Eine zu weite Drehung im Schritt wird kompensiert durch einen Vorzeichenwechsel . Das gezeigte Verfahren konvergiert und ist numerisch stabil für alle , die sich aus obiger Summe ergeben können. Man führt nun noch eine Hilfsvariable ein, die für den Drehsinn Verantwortung trägt:
Wenn nur einfachste Bauteile verwendet werden sollen und daher keine Multiplizierer vorhanden sind, muss man alles über Schiebe- und Addieroperationen bewerkstelligen. Dieses wird erreicht durch den Ansatz
.
Man erhält damit den folgenden Algorithmus:
mit dem Skalierungsfaktor 0,60725... für , der während der Initialisierungsphase implizit berechnet wird.
Initialisierung
Vorweg wird eine Tabelle fester Länge angelegt mit , wobei ist. Die folgenden Werte sind: mit . (Die Werte des Arcustangens lassen sich mit der hier gut konvergierenden Potenzreihenentwicklung bestimmen.)
Die Länge der Tabelle bestimmt die erreichbare Genauigkeit. Führt man alle Drehungen eines Einheitsvektors mit den so berechneten Werten hintereinander in gleichem Drehsinn aus, erzielt man eine Gesamtdrehung von etwas mehr als . Der Skalenfaktor wird mit einem Aufruf im Vektormodus (s. u.) berechnet, indem man die Verlängerung des Einheitsvektors ohne Skalierung berechnet.
Rotationsmodus
Der Ausgangsvektor wird in jedem der Schritte so gedreht, dass der Winkel gegen Null geht. Es werden stets alle Teildrehungen ausgeführt, mit ggf. wechselndem Vorzeichen. Da der Kosinus eine gerade Funktion ist, spielt das Vorzeichen bei der Skalierung keine Rolle. Nach Reskalierung sind die Komponenten des erhaltenen Endvektors und . Der Konvergenzbereich ergibt sich zu , also bei genügend großem etwa zu , d. h., er erstreckt sich über mehr als den vierten und ersten Quadranten.
Vektormodus
Der vorgegebene Vektor, dessen Polarkoordinaten gesucht werden, wird immer so gedreht, dass sich der Betrag seiner -Komponente verringert. Die Drehwinkel werden dabei vorzeichenrichtig addiert. Die -Komponente des Endvektors ist nach Reskalierung der Betrag des Ausgangsvektors. Dieser Modus wird auch benutzt zur Berechnung des Arcustangens aus zwei Argumenten, Start mit . Der Konvergenzbereich ist derselbe wie oben.
Aus lassen sich die Funktionen und unter Zuhilfenahme von leicht ableiten.
Bereich außerhalb von ±π/2
Der Startvektor bzw. entspricht einer Vorwegdrehung von bzw. (für den Rotationsmodus). Bei einem Startvektor mit negativer -Komponente im Vektormodus bewirkt man entsprechende Drehungen durch Vertauschen der Komponenten und Änderungen der Vorzeichen.
Verallgemeinerung
Die oben benutzten Iterationsformeln
sind ein Sonderfall der allgemeineren Vorschrift
mit und sowie .
Lineare Modi
Für , und erhält man
,
womit sich Multiplikation und Division durchführen lassen. Eine Tabelle erübrigt sich hier.
Multiplikation
, ergibt im Rotationsmodus ( gegen 0) für alle .
Division
, ergibt im Vektormodus ( gegen 0) für alle .
Hyperbolische Modi
Mit werden die Hyperbelfunktionen, ihre Umkehrungen (Areafunktionen), Exponentialfunktion und Logarithmus sowie die Quadratwurzel berechenbar. Einheitskreis bzw. -hyperbel werden durch mit bzw. beschrieben. Das zu einem Vektor gehörende Winkel- bzw. Areaargument ist durch gegeben, also
, Winkelfunktionen (s.o): und
, hyperbolische Fkt.:
, hier ; ; und wegen auch .
Das Verfahren ist analog zu dem eingangs gezeigten für die Winkelfunktionen. Erforderlich sind nur eine weitere Tabelle mit , und die einmalige Berechnung des Skalenfaktors .
Die Iterationen müssen immer wiederholt werden, da der Areatangens hyperbolicus nicht die Bedingung erfüllt, das somit für die Reihe nicht konvergieren würde.
Rotation mit liefert:
_,
davon abgeleitet:
und
Vektormodus mit berechnet:
und den hyperbolischen Betrag
davon abgeleitet:
sowie
aus dem Betrag des Startvektors
Der Konvergenzbereich ist in beiden Modi beschränkt durch die maximal mögliche Änderung von . Alle mathematisch erlaubten Argumente können jedoch durch einfache Umstellungen und Shift-Operationen auf ihn abgebildet werden.
Alternativen
Als Alternativen kommen hauptsächlich schnelle Tablelookup-Verfahren in Frage, wie z. B. in DSPs, und Bitalgorithmen, die mit einem ähnlichen Ansatz wie CORDIC die Berechnung vornehmen.
Literatur
Jack E. Volder: The CORDIC Trigonometric Computing Technique. In: IRE Transactions on Electronic Computers. September 1959.
D. H. Daggett: Decimal-Binary conversions in CORDIC. In: IRE Transactions on Electronic Computers. Vol. EC-8 #5, pp 335–339, IRE, September 1959.
J. E. Meggitt, Pseudo Division and Pseudo Multiplication Processes. In: IBM Journal. April 1962.